Optimal power flow analysis under photovoltaic and wind power uncertainties using the blood-sucking leech optimizer

Authors

DOI:

https://doi.org/10.20998/2074-272X.2025.6.03

Keywords:

blood-sucking leech optimizer, optimal power flow, stochastic renewable energy sources, power systems

Abstract

Introduction. Optimal power flow (OPF) is a fundamental task in modern power systems, aiming to ensure cost-effective generation dispatch and efficient energy distribution. The increasing integration of renewable energy sources such as photovoltaic (PV) and wind turbines (WT), alongside conventional thermal units, introduces significant variability and uncertainty into system operations. Problem. The OPF problem is nonlinear, constrained by complex technical limits, and further complicated by the stochastic nature of PV and WT power generation. Efficiently addressing these uncertainties while maintaining system optimality remains a major challenge. The goal of this study is to solve the OPF problem in power networks that integrate PV and WT systems, while accounting for the uncertainty in their power outputs. Methodology. The stochastic behavior of PV and WT units is modeled using probability distribution functions. A novel bio-inspired metaheuristic, the Blood-Sucking Leech Optimizer (BSLO), is proposed and benchmarked against two well-established algorithms: Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO). Simulations are conducted on both the IEEE 30-bus test system and a real Algerian transmission network. Results. The BSLO algorithm consistently outperforms PSO and GWO in minimizing generation cost, power losses, and voltage deviation across all tested scenarios. Scientific novelty. This work considers both single and multi-objective OPF formulations, whereas most previous studies focus solely on single-objective approaches. It integrates renewable generation uncertainty through probabilistic modeling and introduces a novel metaheuristic (BSLO). Validation on a real Algerian power grid confirms the method’s robustness and practical relevance. Practical value. The results confirm the BSLO algorithm as a promising and effective tool for solving complex, renewable-integrated OPF problems in real-world power systems, contributing to more reliable, economical, and flexible grid operation. References 48, tables 13, figures 17.

Author Biographies

B. Bouhadouza, University of Kasdi Merbah Ouargla

Senior Lecturer, Department of Electrical Engineering, Faculty of Applied Sciences

F. Sadaoui, University of Kasdi Merbah Ouargla

Professor, Department of Electrical Engineering, Faculty of Applied Sciences

References

Carpentier J. Optimal power flows. International Journal of Electrical Power & Energy Systems, 1979, vol. 1, no. 1, pp. 3-15. doi: https://doi.org/10.1016/0142-0615(79)90026-7.

Capitanescu F., Martinez Ramos J.L., Panciatici P., Kirschen D., Marano Marcolini A., Platbrood L., Wehenkel L. State-of-the-art, challenges, and future trends in security constrained optimal power flow. Electric Power Systems Research, 2011, vol. 81, no. 8, pp. 1731-1741. doi: https://doi.org/10.1016/j.epsr.2011.04.003.

Naderi E., Narimani H., Pourakbari-Kasmaei M., Cerna F.V., Marzband M., Lehtonen M. State-of-the-Art of Optimal Active and Reactive Power Flow: A Comprehensive Review from Various Standpoints. Processes, 2021, vol. 9, no. 8, art. no. 1319. doi: https://doi.org/10.3390/pr9081319.

Lai L.L., Ma J.T., Yokoyama R., Zhao M. Improved genetic algorithms for optimal power flow under both normal and contingent operation states. International Journal of Electrical Power & Energy Systems, 1997, vol. 19, no. 5, pp. 287-292. doi: https://doi.org/10.1016/S0142-0615(96)00051-8.

Abido M.A. Optimal power flow using particle swarm optimization. International Journal of Electrical Power & Energy Systems, 2002, vol. 24, no. 7, pp. 563-571. doi: https://doi.org/10.1016/S0142-0615(01)00067-9.

Bakirtzis A.G., Biskas P.N., Zoumas C.E., Petridis V. Optimal power flow by enhanced genetic algorithm. IEEE Transactions on Power Systems, 2002, vol. 17, no. 2, pp. 229-236. doi: https://doi.org/10.1109/TPWRS.2002.1007886.

Roa-Sepulveda C.A., Pavez-Lazo B.J. A solution to the optimal power flow using simulated annealing. International Journal of Electrical Power & Energy Systems, 2003, vol. 25, no. 1, pp. 47-57. doi: https://doi.org/10.1016/S0142-0615(02)00020-0.

Somasundaram P., Kuppusamy K., Kumudini Devi R.P. Evolutionary programming based security constrained optimal power flow. Electric Power Systems Research, 2004, vol. 72, no. 2, pp. 137-145. doi: https://doi.org/10.1016/j.epsr.2004.02.006.

Si Tayeb A., Larouci B., Rezzak D., Houam Y., Bouzeboudja H., Bouchakour A. Application of a new hybridization to solve economic dispatch problem on an Algerian power system without or with connection to a renewable energy. Diagnostyka, 2021, vol. 22, no. 3, pp. 101-112. doi: https://doi.org/10.29354/diag/142060.

Marzbani F., Abdelfatah A. Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review. Energies, 2024, vol. 17, no. 3, art. no. 550. doi: https://doi.org/10.3390/en17030550.

Sulaiman M.H., Mustaffa Z. Optimal power flow incorporating stochastic wind and solar generation by metaheuristic optimizers. Microsystem Technologies, 2021, vol. 27, no. 9, pp. 3263-3277. doi: https://doi.org/10.1007/s00542-020-05046-7.

Ghasemi M., Trojovský P., Trojovská E., Zare M. Gaussian bare-bones Levy circulatory system-based optimization for power flow in the presence of renewable units. Engineering Science and Technology, an International Journal, 2023, vol. 47, art. no. 101551. doi: https://doi.org/10.1016/j.jestch.2023.101551.

Naidji M., Boudour M. Stochastic multi‐objective optimal reactive power dispatch considering load and renewable energy sources uncertainties: a case study of the Adrar isolated power system. International Transactions on Electrical Energy Systems, 2020, vol. 30, no. 6. doi: https://doi.org/10.1002/2050-7038.12374.

Kouadri R., Slimani L., Bouktir T., Musirin I. Optimal Power Flow Solution for Wind Integrated Power in presence of VSC-HVDC Using Ant Lion Optimization. Indonesian Journal of Electrical Engineering and Computer Science, 2018, vol. 12, no. 2, pp. 625-633. doi: https://doi.org/10.11591/ijeecs.v12.i2.pp625-633.

Wells D.W. Method for economic secure loading of a power system. Proceedings of the Institution of Electrical Engineers, 1968, vol. 115, no. 8, art. no. 1190. doi: https://doi.org/10.1049/piee.1968.0210.

Habibollahzadeh H., Luo G.-X., Semlyen A. Hydrothermal optimal power flow based on a combined linear and nonlinear programming methodology. IEEE Transactions on Power Systems, 1989, vol. 4, no. 2, pp. 530-537. doi: https://doi.org/10.1109/59.193826.

Ponnambalam K., Quintana V.H., Vannelli A. A fast algorithm for power system optimization problems using an interior point method. IEEE Transactions on Power Systems, 1992, vol. 7, no. 2, pp. 892-899. doi: https://doi.org/10.1109/59.141801.

Sun D., Ashley B., Brewer B., Hughes A., Tinney W. Optimal Power Flow By Newton Approach. IEEE Transactions on Power Apparatus and Systems, 1984, vol. PAS-103, no. 10, pp. 2864-2880. doi: https://doi.org/10.1109/TPAS.1984.318284.

Santos A., da Costa G.R.M. Optimal-power-flow solution by Newton’s method applied to an augmented Lagrangian function. IEE Proceedings: Generation, Transmission and Distribution, 1995, vol. 142, no. 1, pp. 33-36. doi: https://doi.org/10.1049/ip-gtd:19951586.

Nicholson H., Sterling M. Optimum Dispatch of Active and Reactive Generation by Quadratic Programming. IEEE Transactions on Power Apparatus and Systems, 1973, vol. PAS-92, no. 2, pp. 644-654. doi: https://doi.org/10.1109/TPAS.1973.293768.

Diab A.A.Z., Abdelhamid A.M., Sultan H.M. Comprehensive analysis of optimal power flow using recent metaheuristic algorithms. Scientific Reports, 2024, vol. 14, no. 1, art. no. 13422. doi: https://doi.org/10.1038/s41598-024-58565-y.

Surender Reddy S., Bijwe P.R. Efficiency improvements in meta-heuristic algorithms to solve the optimal power flow problem. International Journal of Electrical Power & Energy Systems, 2016, vol. 82, pp. 288-302. doi: https://doi.org/10.1016/j.ijepes.2016.03.028.

Nassef A.M., Abdelkareem M.A., Maghrabie H.M., Baroutaji A. Review of Metaheuristic Optimization Algorithms for Power Systems Problems. Sustainability, 2023, vol. 15, no. 12, art. no. 9434. doi: https://doi.org/10.3390/su15129434.

Abbas M., Alshehri M.A., Barnawi A.B. Potential Contribution of the Grey Wolf Optimization Algorithm in Reducing Active Power Losses in Electrical Power Systems. Applied Sciences, 2022, vol. 12, no. 12, art. no. 6177. doi: https://doi.org/10.3390/app12126177.

Tehzeeb-Ul-Hassan H., Tahir M.F., Mehmood K., Cheema K.M., Milyani A.H., Rasool Q. Optimization of power flow by using Hamiltonian technique. Energy Reports, 2020, vol. 6, pp. 2267-2275. doi: https://doi.org/10.1016/j.egyr.2020.08.017.

Pradhan M., Roy P.K., Pal T. Grey wolf optimization applied to economic load dispatch problems. International Journal of Electrical Power & Energy Systems, 2016, vol. 83, pp. 325-334. doi: https://doi.org/10.1016/j.ijepes.2016.04.034.

Varadarajan M., Swarup K.S. Solving multi-objective optimal power flow using differential evolution. IET Generation, Transmission & Distribution, 2008, vol. 2, no. 5, pp. 720-730. doi: https://doi.org/10.1049/iet-gtd:20070457.

Alghamdi A.S., Zohdy M.A. Boosting cuckoo optimization algorithm via Gaussian mixture model for optimal power flow problem in a hybrid power system with solar and wind renewable energies. Heliyon, 2024, vol. 10, no. 11, art. no. e31755. doi: https://doi.org/10.1016/j.heliyon.2024.e31755.

Biswas P.P., Suganthan P.N., Amaratunga G.A.J. Optimal power flow solutions incorporating stochastic wind and solar power. Energy Conversion and Management, 2017, vol. 148, pp. 1194-1207. doi: https://doi.org/10.1016/j.enconman.2017.06.071.

Guvenc U., Duman S., Kahraman H.T., Aras S., Katı M. Fitness–Distance Balance based adaptive guided differential evolution algorithm for security-constrained optimal power flow problem incorporating renewable energy sources. Applied Soft Computing, 2021, vol. 108, art. no. 107421. doi: https://doi.org/10.1016/j.asoc.2021.107421.

Meng A., Zeng C., Wang P., Chen D., Zhou T., Zheng X., Yin H. A high-performance crisscross search based grey wolf optimizer for solving optimal power flow problem. Energy, 2021, vol. 225, art. no. 120211. doi: https://doi.org/10.1016/j.energy.2021.120211.

Ebeed M., Abdelmotaleb M.A., Khan N.H., Jamal R., Kamel S., Hussien A.G., Zawbaa H.M., Jurado F., Sayed K. A Modified Artificial Hummingbird Algorithm for solving optimal power flow problem in power systems. Energy Reports, 2024, vol. 11, pp. 982-1005. doi: https://doi.org/10.1016/j.egyr.2023.12.053.

Mezhoud N., Ayachi B., Amarouayache M. Multi-objective optimal power flow based gray wolf optimization method. Electrical Engineering & Electromechanics, 2022, no. 4, pp. 57-62. doi: https://doi.org/10.20998/2074-272X.2022.4.08.

Jamal R., Khan N.H., Ebeed M., Zeinoddini-Meymand H., Shahnia F. An improved pelican optimization algorithm for solving stochastic optimal power flow problem of power systems considering uncertainty of renewable energy resources. Results in Engineering, 2025, vol. 26, art. no. 104553. doi: https://doi.org/10.1016/j.rineng.2025.104553.

Hassan M.H., Kamel S., Alateeq A., Alassaf A., Alsaleh I. Optimal Power Flow Analysis With Renewable Energy Resource Uncertainty: A Hybrid AEO-CGO Approach. IEEE Access, 2023, vol. 11, pp. 122926-122961. doi: https://doi.org/10.1109/ACCESS.2023.3328958.

Laifa A., Ayachi B. Application of whale algorithm optimizer for unified power flow controller optimization with consideration of renewable energy sources uncertainty. Electrical Engineering & Electromechanics, 2023, no. 2, pp. 69-78. doi: https://doi.org/10.20998/2074-272X.2023.2.11.

Nagarajan K., Rajagopalan A., Bajaj M., Raju V., Blazek V. Enhanced wombat optimization algorithm for multi-objective optimal power flow in renewable energy and electric vehicle integrated systems. Results in Engineering, 2025, vol. 25, art. no. 103671. doi: https://doi.org/10.1016/j.rineng.2024.103671.

Nassef A.M., Abdelkareem M.A., Maghrabie H.M., Baroutaji A. Review of Metaheuristic Optimization Algorithms for Power Systems Problems. Sustainability, 2023, vol. 15, no. 12, art. no. 9434. doi: https://doi.org/10.3390/su15129434.

Mohamed A.A., Kamel S., Hassan M.H., Domínguez-García J.L. Optimal Power Flow Incorporating Renewable Energy Sources and FACTS Devices: A Chaos Game Optimization Approach. IEEE Access, 2024, vol. 12, pp. 23338-23362. doi: https://doi.org/10.1109/ACCESS.2024.3363237.

Nguyen T.T., Nguyen H.D., Duong M.Q. Optimal Power Flow Solutions for Power System Considering Electric Market and Renewable Energy. Applied Sciences, 2023, vol. 13, no. 5, art. no. 3330. doi: https://doi.org/10.3390/app13053330.

Gurumoorthi G., Senthilkumar S., Karthikeyan G., Alsaif F. A hybrid deep learning approach to solve optimal power flow problem in hybrid renewable energy systems. Scientific Reports, 2024, vol. 14, no. 1, art. no. 19377. doi: https://doi.org/10.1038/s41598-024-69483-4.

Adhikari A., Jurado F., Naetiladdanon S., Sangswang A., Kamel S., Ebeed M. Stochastic optimal power flow analysis of power system with renewable energy sources using Adaptive Lightning Attachment Procedure Optimizer. International Journal of Electrical Power & Energy Systems, 2023, vol. 153, art. no. 109314. doi: https://doi.org/10.1016/j.ijepes.2023.109314.

Laouafi F. Improved grey wolf optimizer for optimal reactive power dispatch with integration of wind and solar energy. Electrical Engineering & Electromechanics, 2025, no. 1, pp. 23-30. doi: https://doi.org/10.20998/2074-272X.2025.1.04.

Bai J., Nguyen-Xuan H., Atroshchenko E., Kosec G., Wang L., Abdel Wahab M. Blood-sucking leech optimizer. Advances in Engineering Software, 2024, vol. 195, art. no. 103696. doi: https://doi.org/10.1016/j.advengsoft.2024.103696.

MATPOWER. Free, open-source tools for electric power system simulation and optimization. Available at: https://matpower.org/about/ (accessed on 27 April 2024).

Bouhadouza B., Bouktir T., Bourenane A. Transient Stability Augmentation of the Algerian South-Eastern Power System including PV Systems and STATCOM. Engineering, Technology & Applied Science Research, 2020, vol. 10, no. 3, pp. 5660-5667. doi: https://doi.org/10.48084/etasr.3433.

Kennedy J., Eberhart R. Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks, 1995, vol. 4, pp. 1942-1948. doi: https://doi.org/10.1109/ICNN.1995.488968.

Mirjalili S., Mirjalili S.M., Lewis A. Grey Wolf Optimizer. Advances in Engineering Software, 2014, vol. 69, pp. 46-61. doi: https://doi.org/10.1016/j.advengsoft.2013.12.007.

Downloads

Published

2025-11-02

How to Cite

Bouhadouza, B., & Sadaoui, F. (2025). Optimal power flow analysis under photovoltaic and wind power uncertainties using the blood-sucking leech optimizer. Electrical Engineering & Electromechanics, (6), 15–26. https://doi.org/10.20998/2074-272X.2025.6.03

Issue

Section

Electrotechnical complexes and Systems