Nonlinear vector control of multiphase induction motor using linear quadratic regulator and active disturbances rejection control under disturbances and parameter variations

Authors

DOI:

https://doi.org/10.20998/2074-272X.2025.6.10

Keywords:

optimal control, active disturbances rejection control, indirect field-oriented control, multiphase induction motor, three-level neutral point clamped inverters

Abstract

Introduction. This paper introduces a hybrid control strategy for multiphase induction motors, specifically focusing on the dual star induction motor (DSIM) by integrating active disturbances rejection control (ADRC) and linear quadratic regulator (LQR). Problem. Conventional PI-based indirect field oriented control (IFOC) of DSIM drives exhibit 3 critical shortcomings: 1) sensitivity to parameter variations, such as rotor resistance fluctuations; 2) sluggish transient response during rapid speed and torque changes; 3) slow disturbances rejection, such as sudden load torque variations. The goal of this work is to achieve enhanced reliability, precision and robustness of DSIM drives in high-performance demand applications such as automotive. Methodology. The proposed hybrid control architecture is structured as follows: 1) IFOC decoupling. The DSIM’s stator currents are decomposed into 2 components using Park transformations, aligning the rotor flux vector to the d-axis. 2) The LQR is designed to optimize the outer speed/torque loop regulation by minimizing control efforts and state deviations. 3) ADRCs controllers are designed in the inner current loops. Each controller utilizes an extended state observer to estimate and compensate parameter variations and external disturbances in real time. Results. Simulations using MATLAB/Simulink validation on a 5 kW DSIM under multiple scenarios confirm the robustness of the proposed hybrid strategy. Scientific novelty. The contribution lies in the integration of ADRC and LQR in IFOC: The hierarchical fusion of ADRC (inner loops) and LQR (outer loop) uniquely leverages ADRC’s and the LQR’s real-time power to handle any disturbances and unmodeled dynamics. Practical value. The proposed technique demonstrates enhanced performances in speed’s response, sudden load torque demands and parameter variations. It exhibited high robustness even under degraded conditions such as phase faults, making this strategy ideal for high-performance applications like electric vehicles, where stability and adaptability are critical. References 31, tables 2, figures 24.

Author Biographies

S. E. Rezgui, University Constantine 1 Freres Mentouri

Doctor of Technical Sciences, Associate Professor, Laboratory of Electrical Engineering of Constantine (LEC), Technology Sciences Faculty

Z. Darsouni, University Constantine 1 Freres Mentouri

PhD Student, Laboratory of Electrical Engineering of Constantine (LEC), Technology Sciences Faculty

H. Benalla, University Constantine 1 Freres Mentouri

Full Professor, Laboratory of Electrical Engineering of Constantine (LEC), Technology Sciences Faculty

References

Volkov V.A., Antonov N.L. Refined calculation of energy modes of a frequency-regulated induction motor. Electrical Engineering & Electromechanics, 2024, no. 5, pp. 3-13. doi: https://doi.org/10.20998/2074-272X.2024.5.01.

Chaib Ras A., Bouzerara R., Bouzeria H. An adaptive controller for power quality control in high speed railway with electric locomotives with asynchronous traction motors. Electrical Engineering & Electromechanics, 2024, no. 2, pp. 23-30. doi: https://doi.org/10.20998/2074-272X.2024.2.04.

Salem A., Narimani M. A Review on Multiphase Drives for Automotive Traction Applications. IEEE Transactions on Transportation Electrification, 2019, vol. 5, no. 4, pp. 1329-1348. doi: https://doi.org/10.1109/TTE.2019.2956355.

Rinkeviciene R., Savickiene Z., Uznys D., Pitrenas A., Slepikas A. Scalar control of six-phase induction motor. 2017 Open Conference of Electrical, Electronic and Information Sciences (EStream), 2017, pp. 1-6. doi: https://doi.org/10.1109/eStream.2017.7950304.

Mossa M.A., Khouidmi H., Ma’arif A. Robust Flux and Speed State Observer Design for Sensorless Control of a Double Star Induction Motor. Journal of Robotics and Control (JRC), 2022, vol. 3, no. 4, pp. 464-475. doi: https://doi.org/10.18196/jrc.v3i4.15667.

Chatterjee S., Chatterjee S. A novel speed sensor-less vector control of Dual Stator Induction machine with space vector based advanced 9-zone hybrid PWM for grid connected wind energy generation system. Electric Power Systems Research, 2018, vol. 163, pp. 174-195. doi: https://doi.org/10.1016/j.epsr.2018.02.021.

Pandit J.K., Aware M.V., Nemade R., Tatte Y. Simplified Implementation of Synthetic Vectors for DTC of Asymmetric Six-Phase Induction Motor Drives. IEEE Transactions on Industry Applications, 2018, vol. 54, no. 3, pp. 2306-2318. doi: https://doi.org/10.1109/TIA.2018.2789858.

Guedida S., Tabbache B., Nounou K., Benbouzid M. Direct torque control scheme for less harmonic currents and torque ripples for dual star induction motor. Revue Roumaine des Sciences Techniques – Série Électrotechnique et Énergétique, 2023, vol. 68, no. 4, pp. 331-338. doi: https://doi.org/10.59277/RRST-EE.2023.4.2.

Ayaz Khoshhava M., Abootorabi Zarchi H., Markadeh G. Sensor-less Speed and Flux Control of Dual Stator Winding Induction Motors Based on Super Twisting Sliding Mode Control. IEEE Transactions on Energy Conversion, 2021, vol. 36, no. 4, pp. 3231-3240. doi: https://doi.org/10.1109/TEC.2021.3077829.

Abdallah A., Bouchetta A., Boughazi O., Baghdadi A., Bousserhane L.K. Double star induction machine using nonlinear integral backstepping control. International Journal of Power Electronics and Drive Systems (IJPEDS), 2019, vol. 10, no. 1, pp. 27-40. doi: https://doi.org/10.11591/ijpeds.v10.i1.pp27-40.

Nemouchi B., Rezgui S.E., Benalla H., Nebti K. Fractional-based iterative learning-optimal model predictive control of speed induction motor regulation for electric vehicles application. Electrical Engineering & Electromechanics, 2024, no. 5, pp. 14-19. doi: https://doi.org/10.20998/2074-272X.2024.5.02.

Babes B., Hamouda N., Kahla S., Amar H., Ghoneim S.S.M. Fuzzy model based multivariable predictive control design for rapid and efficient speed-sensorless maximum power extraction of renewable wind generators. Electrical Engineering & Electromechanics, 2022, no. 3, pp. 51-62. doi: https://doi.org/10.20998/2074-272X.2022.3.08.

Gonzalez O., Ayala M., Romero C., Delorme L., Rodas J., Gregor R., Gonzalez-Prieto I., Duran M.J. Model Predictive Current Control of Six-Phase Induction Motor Drives Using Virtual Vectors and Space Vector Modulation. IEEE Transactions on Power Electronics, 2022, vol. 37, no. 7, pp. 7617-7628. doi: https://doi.org/10.1109/TPEL.2022.3141405.

Hadji C., Khodja D., Chakroune S. Robust Adaptive Control of Dual Star Asynchronous Machine by Reference Model Based on Landau Stability Theorem. Advances in Modelling and Analysis C, 2019, vol. 74, no. 2-4, pp. 56-62. doi: https://doi.org/10.18280/ama_c.742-403.

Youb L., Belkacem S., Naceri F., Cernat M., Pesquer L.G. Design of an Adaptive Fuzzy Control System for Dual Star Induction Motor Drives. Advances in Electrical and Computer Engineering, 2018, vol. 18, no. 3, pp. 37-44. doi: https://doi.org/10.4316/AECE.2018.03006.

Lazreg M.H., Bentaallah. A. Sensorless Speed Control of Double Star Induction Machine With Five Level DTC Exploiting Neural Network and Extended Kalman Filter. Iranian Journal of Electrical and Electronic Engineering, 2019, vol. 15, no. 1, pp. 142-150. doi: http://doi.org/10.22068/IJEEE.15.1.142.

Bentouhami L., Abdessemed R., Kessal A., Merabet E. Control Neuro-Fuzzy of a Dual Star Induction Machine (DSIM) supplied by Five-Level Inverter. Journal of Power Technologies, 2018, vol. 98, no. 1, pp. 70-79.

Guermit H., Kouzi K., Bessedik S.A. Novel design of an optimized synergetic control for dual stator induction motor. COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2019, vol. 38, no. 6, pp. 1828-1845. doi: https://doi.org/10.1108/COMPEL-01-2019-0042.

Ebrahim O.S., Salem M.F., Jain P.K., Badr M.A. Application of linear quadratic regulator theory to the stator field-oriented control of induction motors. IET Electric Power Applications, 2010, vol. 4, no. 8, pp. 637-646. doi: https://doi.org/10.1049/iet-epa.2009.0164.

Swargiary M., Dey J., Saha T.K. Optimal speed control of induction motor based on Linear Quadratic Regulator theory. 2015 Annual IEEE India Conference (INDICON), 2015, pp. 1-6. doi: https://doi.org/10.1109/INDICON.2015.7443806.

Janous S., Talla J., Smidl V., Peroutka Z. Constrained LQR Control of Dual Induction Motor Single Inverter Drive. IEEE Transactions on Industrial Electronics, 2021, vol. 68, no. 7, pp. 5548-5558. doi: https://doi.org/10.1109/TIE.2020.2994885.

Oumar A., Ahmed Y., Cherkaoui M. Operating of DSIM without current and speed sensors controlled by ADRC control. Mathematical Problems in Engineering, 2022, pp. 1-8. doi: https://doi.org/10.1155/2022/9033780.

Khemis A., Boutabba T., Drid S. Model reference adaptive system speed estimator based on type-1 and type-2 fuzzy logic sensorless control of electrical vehicle with electrical differential. Electrical Engineering & Electromechanics, 2023, no. 4, pp. 19-25. doi: https://doi.org/10.20998/2074-272X.2023.4.03.

Huang Y., Xue W., Zhiqiang G., Sira-Ramirez H., Wu D., Sun M. Active disturbance rejection control: Methodology, practice and analysis. Proceedings of the 33rd Chinese Control Conference, 2014, pp. 1-5. doi: https://doi.org/10.1109/ChiCC.2014.6896585.

Kelam S. Nonlinear robust ADRC control of induction machine. Przegląd Elektrotechniczny, 2023, no. 3, pp. 211-217. doi: https://doi.org/10.15199/48.2023.03.37.

Chalawane H., Essadki A., Nasser T., Arbaoui M. A new robust control based on active disturbance rejection controller for speed sensorless induction motor. 2017 International Conference on Electrical and Information Technologies (ICEIT), 2017, pp. 1-6. doi: https://doi.org/10.1109/EITech.2017.8255226.

Oumar A., Chakib R., Cherkaoui M. Current Sensor Fault-Tolerant Control of DSIM Controlled by ADRC. Mathematical Problems in Engineering, 2020, art. no. 6568297. doi: https://doi.org/10.1155/2020/6568297.

Hezzi A., Ben Elghali S., Bensalem Y., Zhou Z., Benbouzid M., Abdelkrim M.N. ADRC-Based Robust and Resilient Control of a 5-Phase PMSM Driven Electric Vehicle. Machines, 2020, vol. 8, no. 2, art. no. 17. doi: https://doi.org/10.3390/machines8020017.

Vinh V.Q., Phat T.C., Giang N.H. An Adaptive Active Disturbance Rejection Controller (ADRC) for Induction Motor Drives. International Journal of Electrical and Electronics Engineering, 2024, vol. 11, no. 12, pp. 295-301. doi: https://doi.org/10.14445/23488379/IJEEE-V11I12P127.

Han J. From PID to Active Disturbance Rejection Control. IEEE Transactions on Industrial Electronics, 2009, vol. 56, no. 3, pp. 900-906. doi: https://doi.org/10.1109/TIE.2008.2011621.

Darsouni Z., Rezgui S.E., Benalla H., Rebahi F., Boumendjel M.A.M. Ensuring service continuity in electric vehicles with vector control and linear quadratic regulator for dual star induction motors. Electrical Engineering & Electromechanics, 2025, no. 2, pp. 24-30. doi: https://doi.org/10.20998/2074-272X.2025.2.04.

Downloads

Published

2025-11-02

How to Cite

Rezgui, S. E., Darsouni, Z., & Benalla, H. (2025). Nonlinear vector control of multiphase induction motor using linear quadratic regulator and active disturbances rejection control under disturbances and parameter variations. Electrical Engineering & Electromechanics, (6), 75–83. https://doi.org/10.20998/2074-272X.2025.6.10

Issue

Section

Electrotechnical complexes and Systems