EXPERIMENTAL RESEARCH OF THE POWER FREQUENCY TECHNOGENIC MAGNETIC FIELD ACTIVE SCREENING IN SYSTEM WITH DIFFERENT CONTROL ALGORITHMS AND WITH A SINGLE COIL
DOI:
https://doi.org/10.20998/2074-272X.2015.2.04Keywords:
power frequency technogenic magnetic field, active screening in system, single coil, control algorithms, experimental investigationsAbstract
Purpose. Development of methodology and experimental studies of the layout of the active screening of technogenic power frequency magnetic fields with different control algorithms with a single coil magnetic executive body. Methodology. In the course of mathematical modeling to determine geometrical size of the magnetic coil executive body based on the size of the protected area, and the configuration of the coil magnetic executive body is determined based on the required uniformity of the magnetic field distribution in the protected area. Results. Experimental studies of open, closed and combined systems of active screening of technogenic power frequency magnetic fields with a single coil magnetic executive body. Originality. For the first time experimentally confirmed the possibility of reducing the level of induction of man-made power frequency magnetic fields in a given area 3-5 times with a single coil magnetic executive body.. The possibility of reducing the level of the magnetic field in a limited area of the space by 15-20 times Practical value. On the basis of the calculations the layout of active screening of technogenic power frequency magnetic fields with different control algorithms with a single coil magnetic executive body has been made.References
Active Magnetic Shielding (Field Cancellation). Available at: http://www.emfservices.com/afcs.html (accessed 10 September 2012).
Beltran H., Fuster V., García M. Magnetic field reduction screening system for a magnetic field source used in industrial applications. 9 Congreso Hispano Luso de Ingeniería Eléctrica (9 CHLIE), Marbella (Málaga, Spain), 2005, pр. 84-99.
Celozzi S., Garzia F. Active shielding for power-frequency magnetic field reduction using genetic algorithms optimization. IEE Proceedings – Science, Measurement and Technology, 2004, Vol.151, no.1, pp. 2-7. doi: 10.1049/ip-smt:20040002.
Ter Brake H.J.M., Wieringa H.J., Rogalla H. Improvement of the performance of a mu -metal magnetically shielded room by means of active compensation (biomagnetic applications). Measurement Science and Technology, 1991, Vol. 2(7), pp. 596-601. doi: 10.1088/0957-0233/2/7/004.
Yamazaki K., Kato K., Kobayashi K. MCG Measurement in the environment of active magnetic shield. Neurology and Clinical Neurophysiology, 2004, Vol. 40, pp. 1-4.
Celozzi S. Active compensation and partial shields for the power-frequency magnetic field reduction. Conference Paper of IEEE International Symposium on Electromagnetic Compatibility. Minneapolis (USA), 2002, Vol. 1, pp. 222-226. doi: 10.1109/isemc.2002.1032478.
Shenkman A., Sonkin N., Kamensky V. Active protection from electromagnetic field hazards of a high voltage power line. HAIT Journal of Science and Engineering. Series B: Applied Sciences and Engineering, Vol. 2, Issues 1-2, pp. 254-265.
Ter Brake H.J.M., Huonker R., Rogalla H. New results in active noise compensation for magnetically shielded rooms. Measurement Science and Technology, 1993, Vol. 4, Issue 12, pp. 1370-1375. doi: 10.1088/0957-0233/4/12/010.
Kazuo Kato, Keita Yamazaki, Tomoya Sato, Akira Haga, Takashi Okitsu, Kazuhiro Muramatsu, Tomoaki Ueda, Masahito Yoshizawa. Shielding effect of panel type active magnetic compensation. IEEJ Transactions on Fundamentals and Materials, 2005, Vol. 125, Issue 2, pp. 99-106. doi: 10.1541/ieejfms.125.99.
Rozov V.Yu., Assyirov D.A. Method of external magnetic field active shielding of technical objects. Tekhnichna elektrodynamika – Technical electrodynamics, 2006, no.3, pp. 13-16. (Rus).
Rozov V.Yu., Assyirov D.A., Reytskiy S.Yu. Technical objects magnetic-field closed loop compensation systems with different feed-backs forming. Tekhnichna elektrodynamika – Technical electrodynamics, 2008, no.4, pр. 97-100. (Rus).
Rozov V.Yu., Reutskyi S.Yu. Pyliugina O.Yu. The method of calculation of the magnetic field of three-phase power lines. Tekhnichna elektrodynamika – Technical electrodynamics, 2014, no.5, pp. 11-13. (Rus).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 B. I. Kuznetsov, T. B. Nikitina, I. V. Bovdyj, A. V. Voloshko, E. V. Vinichenko, D. A. Kotliarov
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.