Influence of gamma radiation on the electrical and mechanical properties of on-board systems cables

Authors

DOI:

https://doi.org/10.20998/2074-272X.2026.1.10

Keywords:

on-board systems, unshielded cable with unshielded twisted pairs, optical cable, absorbed dose of gamma radiation, polyethylene insulation, electrical capacitance, aramid yarns, waterproof compound, mechanical tensile strength, radiation resistance

Abstract

Introduction. Electrical and fiber-optic cables of on-board systems for transmitting monitoring, control and communication signals are increasingly used in nuclear power plants, aircraft systems and military applications. Such operating conditions are characterized by an increased level of ionizing radiation compared to the background: from 10 kGy in space applications to 1 GGy in the corium of a nuclear reactor. Problem. The resistance of polymer insulation to the action of ionizing radiation is determined on the basis of mechanical, thermophysical, physicochemical indicators that reflect the local characteristics of the polymer insulation of electrical cables. Modern special radiation-resistant optical fibers are capable of operating under the action of gamma radiation with a dose of 1 MGy. To ensure mechanical strength and protection of the optical fiber from moisture, high-strength structural elements and hydrophobic fillers are used in the optical cable. The goal of the work consists in establishing the effect of gamma radiation on unshielded cables with unshielded twisted pairs and optical cables with the determination of the dynamics of changes in the electrical properties of polyethylene insulation of conductors and mechanical properties of aramid yarns with a water-blocking coating, respectively. Methodology is based on the determination of the change in the electrical capacitance of each of the 8 polyethylene-insulated twisted pair conductors and the mechanical tensile strength of Kevlar yarns with a water-blocking compound, compared to the un-irradiated state, depending on the absorbed dose of gamma radiation of 100 kGy, 200 kGy and 300 kGy when processing samples of electrical and optical cables in the cobalt-60 (60) installation. Scientific novelty consists in establishing the criterion for achieving the critical state of polymeric polyethylene insulation of insulated conductors and the effect of the influence of a water-blocking coating with ultra-high absorption capacity on the mechanical strength of aramid yarns under the action of gamma radiation on samples of an electric cable in a protective sheath of polyvinyl chloride plastic compound and an optical cable in a protective sheath based on a polymer fire-resistant composition, respectively. Practical value is qualified by the range of radiation resistance of structural elements to ensure the operational functionality and efficiency of cables of on-board systems under the action of gamma radiation. References 50, tables 3, figures 6.

Author Biographies

G. V. Bezprozvannych, National Technical University «Kharkiv Polytechnic Institute»

Doctor of Technical Science, Professor

I. A. Pushkar, Scientific and Production Enterprise ALAY

Deputy General Director for Production, Postgraduate Student

References

Sahoo S., Zhao X., Kyprianidis K. A Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft. Aerospace, 2020, vol. 7, no. 4, art. no. 44. doi: https://doi.org/10.3390/aerospace7040044.

Aretskin-Hariton E., Schnulo S.L., Hendricks E.S., Chapman J.W. Electrical Cable Design for Urban Air Mobility. American Institute of Aeronautics and Astronautics. Aerospace Research Central. January 2020. doi: https://doi.org/10.2514/6.2020-0014.

Bode I. Emergent Normativity: Communities of Practice, Technology, and Lethal Autonomous Weapon Systems. Global Studies Quarterly, 2024, vol. 4, no. 1, pp. 1-11. doi: https://doi.org/10.1093/isagsq/ksad073.

Dorczuk M. Modern weapon systems equipped with stabilization systems: division, development objectives, and research problems. Scientific Journal of the Military University of Land Forces, 2020, vol. 197, no. 3, pp. 651-659. doi: https://doi.org/10.5604/01.3001.0014.3959.

Borghei M., Ghassemi M. Insulation Materials and Systems for More- and All-Electric Aircraft: A Review Identifying Challenges and Future Research Needs. IEEE Transactions on Transportation Electrification, 2021, vol. 7, no. 3, pp. 1930-1953. doi: https://doi.org/10.1109/TTE.2021.3050269.

Fiber Optic Cable In Military Application Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Russia, UK), Middle East and Africa, APAC (China, India, Japan, South Korea), South America, and Rest of World (ROW). Report. 2025, 222 p. Available at: https://www.mordorintelligence.com/industry-reports/military-fibre-optic-cables-market (Accessed 27 May 2025).

Brunelle R., Pegge C. A history of avionic fiber optic cable development and future requirements. IEEE Conference Avionics Fiber-Optics and Photonics, 2005, pp. 1-2. doi: https://doi.org/10.1109/AVFOP.2005.1514127.

Patel H.K., Shah S.S. Detailed analysis of fiber optic networks and its benefits in defense applications. International Journal of Advanced Research in Engineering and Technology, 2015, vol. 6, no. 2, pp. 01-08. Available at: https://iaeme.com/Home/article_id/IJARET_06_02_001 (Accessed 27 May 2025).

Ruffin P.B. A review of fiber optics technology for military applications. Proceedings of SPIE - The International Society for Optical Engineering, 2000, vol. 10299, pp. 1-24, art. no. 1029902. doi: https://doi.org/10.1117/12.419796.

Kyselak M., Vavra J., Slavicek K., Grenar D., Hudcova L. Long Distance Military Fiber-Optic Polarization Sensor Improved by an Optical Amplifier. Electronics, 2023, vol. 12, no. 7, art. no. 1740. doi: https://doi.org/10.3390/electronics12071740.

Marques C., Leal-Júnior A., Kumar S. Multifunctional Integration of Optical Fibers and Nanomaterials for Aircraft Systems. Materials, 2023, vol. 16, no. 4, art. no. 1433. doi: https://doi.org/10.3390/ma16041433.

Rovera A., Tancau A., Boetti N., Dalla Vedova M.D.L., Maggiore P., Janner D. Fiber Optic Sensors for Harsh and High Radiation Environments in Aerospace Applications. Sensors, 2023, vol. 23, no. 5, art. no. 2512. doi: https://doi.org/10.3390/s23052512.

Lee H.-K., Choo J., Shin G., Kim J. Long-Reach DWDM-Passive Optical Fiber Sensor Network for Water Level Monitoring of Spent Fuel Pool in Nuclear Power Plant. Sensors, 2020, vol. 20, no. 15, art. no. 4218. doi: https://doi.org/10.3390/s20154218.

Esposito F., Stancalie A., Campopiano S., Iadicicco A. Editorial to the Special Issue Optical Fiber Sensors in Radiation Environments. Sensors, 2023, vol. 23, no. 22, art. no. 9117. doi: https://doi.org/10.3390/s23229117.

Nexans. Nuclear industry Cable Applications. A practical guide. 2016, 24 p.

Šaršounová Z., Plaček V., Prajzler V., Masopustová K., Havránek P. Influence of Optic Cable Construction Parts on Recovery Process after Gamma Irradiation. Energies, 2022, vol. 15, no. 2, art. no. 599. doi: https://doi.org/10.3390/en15020599.

Cheymol G., Maurin L., Remy L., Arounassalame V., Maskrot H., Rougeault S., Dauvois V., Le Tutour P., Huot N., Ouerdane Y., Ferdinand P. Irradiation Tests of Optical Fibers and Cables Devoted to Corium Monitoring in Case of a Severe Accident in a Nuclear Power Plant. IEEE Transactions on Nuclear Science, 2020, vol. 67, no. 4, pp. 669-678. doi: https://doi.org/10.1109/TNS.2020.2978795.

London Y., Sharma K., Diamandi H., Hen M., Bashan G., Zehavi E., Zilberman S., Berkovic G., Zentner A., Mayoni M., Stolov A., Kalina M., Kleinerman O., Shafir E., Zadok A. Opto-Mechanical Fiber Sensing of Gamma Radiation. Journal of Lightwave Technology, 2021, vol. 39, no. 20, pp. 6637-6645. doi: https://doi.org/10.1109/JLT.2021.3102698.

Francesca D.Di, Brugger M., Vecchi G.L., Girard S., Morana A., Reghioua I., Alessi A., Hoehr C., Robin T., Kadi Y. Qualification and Calibration of Single-Mode Phosphosilicate Optical Fiber for Dosimetry at CERN. Journal of Lightwave Technology, 2019, vol. 37, no. 18, pp. 4643-4649. doi: https://doi.org/10.1109/JLT.2019.2915510.

Naikwadi A.T., Sharma B.K., Bhatt K.D., Mahanwar P.A. Gamma Radiation Processed Polymeric Materials for High Performance Applications: A Review. Frontiers in Chemistry, 2022, vol. 10. art. no. 837111. doi: https://doi.org/10.3389/fchem.2022.837111.

Drobny J.G. Radiation Technology for Polymers. Boca Raton, CRC Press, 2021, 338 p. doi: https://doi.org/10.1201/9780429201196.

Radiation Technologies and Applications in Materials Science. Edited by Subhendu Ray Chowdhury. Boca Raton, CRC Press, 2022, 416 p. doi: https://doi.org/10.1201/9781003321910.

Tamada M. Radiation Processing of Polymers and Its Applications. Radiation Applications, 2018, pp. 63-80. doi: https://doi.org/10.1007/978-981-10-7350-2_8.

Ashfaq A., Clochard M.-C., Coqueret X., Dispenza C., Driscoll M.S., Ulański P., Al-Sheikhly M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers, 2020, vol. 12, no. 12, art. no. 2877. doi: https://doi.org/10.3390/polym12122877.

Azevedo A.M.de, da Silveira P.H.P.M., Lopes T.J., da Costa O.L.B., Monteiro S.N., Veiga-Júnior V.F., Silveira P.C.R., Cardoso D.D., Figueiredo A.B.-H. da S. Ionizing Radiation and Its Effects on Thermoplastic Polymers: An Overview. Polymers, 2025, vol. 17, no. 8, art. no. 1110. doi: https://doi.org/10.3390/polym17081110.

Barlow A., Biggs J.W., Meeks L.A. Radiation processing of polyethylene. Radiation Physics and Chemistry, 1981, vol. 18, no. 1-2, pp. 267-280. doi: https://doi.org/10.1016/0146-5724(81)90080-7.

Liu B., Gao Y., Li J., Guo C., Gao J., Chen Y., Du B. Aging Behavior of Polypropylene as Cable Insulation Under Gamma-Ray Irradiation. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, vol. 31, no. 2, pp. 956-964. doi: https://doi.org/10.1109/TDEI.2023.3337753.

Manas D., Ovsik M., Mizera A., Manas M., Hylova L., Bednarik M., Stanek M. The Effect of Irradiation on Mechanical and Thermal Properties of Selected Types of Polymers. Polymers, 2018, vol. 10, no. 2, art. no. 158. doi: https://doi.org/10.3390/polym10020158.

Sirin M., Zeybek M.S., Sirin K., Abali Y. Effect of gamma irradiation on the thermal and mechanical behaviour of polypropylene and polyethylene blends. Radiation Physics and Chemistry, 2022, vol. 194, art. no. 110034. doi: https://doi.org/10.1016/j.radphyschem.2022.110034.

Besprozvannykh G.V., Naboka B.G., Morozova E.V. Radiation resistance of internal cables for general industrial use. Electrical Engineering & Electromechanics, 2006, no. 3, pp. 82-86. (Rus).

Liu Z., Miyazaki Y., Hirai N., Ohki Y. Comparison of the effects of heat and gamma irradiation on the degradation of cross‐linked polyethylene. IEEJ Transactions on Electrical and Electronic Engineering, 2020, vol. 15, no. 1, pp. 24-29. doi: https://doi.org/10.1002/tee.23023.

Maléchaux A., Colombani J., Amat S., Marque S.R.A., Dupuy N. Influence of Gamma Irradiation on Electric Cables Models: Study of Additive Effects by Mid-Infrared Spectroscopy. Polymers, 2021, vol. 13, no. 9, art. no. 1451. doi: https://doi.org/10.3390/polym13091451.

Li D., Sriraman A., Ni Y., Ellis I., Spencer M.P., Zwoster A., Fifield L.S. Dose Rate Effects in the Aging of Nuclear Cable Insulation Subjected to Gamma Radiation. 2022 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), 2022, pp. 372-375. doi: https://doi.org/10.1109/CEIDP55452.2022.9985382.

Girard S., Kuhnhenn J., Gusarov A., Brichard B., Van Uffelen M., Ouerdane Y., Boukenter A., Marcandella C. Radiation Effects on Silica-Based Optical Fibers: Recent Advances and Future Challenges. IEEE Transactions on Nuclear Science, 2013, vol. 60, no. 3, pp. 2015-2036. doi: https://doi.org/10.1109/TNS.2012.2235464.

Prajzler V., Masopoustova K., Sarsounova Z. Gamma radiation effects on plastic optical fibers. Optical Fiber Technology, 2022, vol. 72, art. no. 102995. doi: https://doi.org/10.1016/j.yofte.2022.102995.

Bezprozvannykh G.V., Naboka B. G., Morozova E.V. The influence of impurities on radiation-induced losses in optical fibers. Bulletin of NTU «KhPI», Series: Energy: Reliability and Energy Efficiency, 2006, no. 7, pp. 53-58. (Rus).

Campanella C., De Michele V., Morana A., Mélin G., Robin T., Marin E., Ouerdane Y., Boukenter A., Girard S. Radiation Effects on Pure-Silica Multimode Optical Fibers in the Visible and Near-Infrared Domains: Influence of OH Groups. Applied Sciences, 2021, vol. 11, no. 7, art. no. 2991. doi: https://doi.org/10.3390/app11072991.

Von White II G., Tandon R., Serna L., Celina M., Bernstein R. An Overview of Basic Radiation Effects on Polymers and Glasses. U.S. Department of Energy, 2013, 35 p. Available at: https://www.osti.gov/servlets/purl/1671997 (Accessed 19 May 2025).

Bezprozvannykh G.V., Naboka B.G., Morozova E.V. Relaxation of radiation-induced losses in quartz-based optical fibers after the end of irradiation. Bulletin of NTU «KhPI», Series: Energy: Reliability and Energy Efficiency, 2005, no. 42, pp. 57-60. (Rus).

Li J., Chen Q., Zhou J., Cao Z., Li T., Liu F., Yang Z., Chang S., Zhou K., Ming Y., Yan T., Zheng W. Radiation Damage Mechanisms and Research Status of Radiation-Resistant Optical Fibers: A Review. Sensors, 2024, vol. 24, no. 10, art. no. 3235. doi: https://doi.org/10.3390/s24103235.

Bickham S.R., Glaesemann G.S., Shu Y., Scannell G.W. Reliability and Bend Loss of Optical Fibers in Tight Bend Applications. 2021 IEEE CPMT Symposium Japan (ICSJ), 2021, pp. 146-149. doi: https://doi.org/10.1109/ICSJ52620.2021.9648876.

Bezprozvannych G.V., Mirchuk I.A. Correlation between electrical and mechanical characteristics of cables with radiation-modified insulation on the basis of a halogen-free polymer composition. Electrical Engineering & Electromechanics, 2018, no. 4, pp. 54-57. doi: https://doi.org/10.20998/2074-272X.2018.4.09.

Bezprozvannych G.V., Mirchuk I.A. Influence of technological dose of irradiation on mechanical and electrical characteristics of polymeric insulation of wires. Problems of Atomic Science and Technology, 2018, vol. 117, no. 5, pp. 40-44.

Kevlar Aramid Fiber Technical Guide. DuPont. 2017, 24 p. Available at: https://www.dupont.com/content/dam/dupont/amer/us/en/safety/public/documents/en/Kevlar_Technical_Guide_0319.pdf (Accessed 17 May 2025).

Klepikov V.F., Prokhorenko E.M., Lytvynenko V.V., Zakharchenko A.A., Hazhmuradov M.A. Control of macroscopic characteristics of composite materials for radiation protection. Problems of Atomic Science and Technology, 2015, vol. 96, no. 2, pp. 193-196.

Bezprozvannych G.V., Moskvitin Y.S., Kostiukov I.O., Grechko O.M. Dielectric parameters of phase and belt paper impregnated insulation of power cables. Electrical Engineering & Electromechanics, 2025, no. 2, pp. 69-78. doi: https://doi.org/10.20998/2074-272X.2025.2.09.

Bezprozvannych G.V., Gontar Y.G., Pushkar I.A. Electrostatic field in unshielded power cables with different configurations of core. Technical Electrodynamics, 2025, no. 4, pp. 29-41. (Ukr). doi: https://doi.org/10.15407/techned2025.04.029.

Bezprozvannych G.V., Grynyshyna M.V., Kyessayev A.G., Grechko O.M. Providing technical parameters of resistive cables of the heating floor system with preservation of thermal resistance of insulation. Electrical Engineering & Electromechanics, 2020, no. 3, pp. 43-47. doi: https://doi.org/10.20998/2074-272X.2020.3.07.

Gillen K.T., Assink R.A., Bernstein R. Final Report on Aging and Condition Monitoring of Low-Voltage Cable Materials. Scandia National Laboratories, Nuclear Energy Plant Optimization (NEPO). SAND2005–7331, 2005. 287 р.

Bezprozvannykh G.V., Moskvitin Y.S. Applied Programming in GNU Octave. Kharkiv, NTU «KhPI» Publ., 2025. 202 p. (Ukr).

Published

2026-01-02

How to Cite

Bezprozvannych, G. V., & Pushkar, I. A. (2026). Influence of gamma radiation on the electrical and mechanical properties of on-board systems cables. Electrical Engineering & Electromechanics, (1), 76–85. https://doi.org/10.20998/2074-272X.2026.1.10

Issue

Section

Electrical Insulation and Cable Engineering