Simplified method for analytically determining the external magnetostatic field of uncertain extended technical objects based on near-field measurements

Authors

DOI:

https://doi.org/10.20998/2074-272X.2025.3.10

Keywords:

energy-saturated extended technical objects, magnetic field, multispheroidal model, magnetic silencing, extended spheroidal coordinate system, spatial extended spheroidal harmonics

Abstract

Introduction. An important scientific and technical problem of magnetism of uncertain extended energy-saturated objects - such as naval vessels and submarines is implementation of strict requirements for magnetic silence based on mathematical modeling of magnetic field, adequate to its real measurements. The purpose of the work is to develop a simplified analytical method for determining the external magnetostatic field of extended technical objects with uncertain magnetic field sources based on near-field measurement data using spherical and spheroidal sources in a Cartesian coordinate system. Methodology. Forward problems of magnetostatics solved based on developed method of analytical calculation of magnetostatic field induction of spherical and spheroidal sources in Cartesian coordinate system based on near-field measurements. Geometric inverse problems of magnetostatics for solving prediction and control problems of magnetic silence of technical object calculated based on vector games solution. Both vector games payoff calculated as forward problems solutions Wolfram Mathematica software package used. Results. The results of prediction of magnetic field magnitude in far zone of extended technical objects based on designed multispheroidal magnetic field model in form of spatial elongated spheroidal harmonics in prolate spheroidal coordinate system and in form of multispherical magnetic field model in form of spatial spherical harmonics in spherical coordinate system using measurements near field and taking into account magnetic characteristics uncertainty of extracted technical objects. Originality. For the first time, a method of simplifying the mathematical modeling of the magnetic field of an uncertain long energy- saturated object developed based on development and application of method of analytical calculation of induction of magnetostatic fields of spherical and spheroidal sources in the Cartesian coordinate system. Unlike known methods developed method allows modeling magnetic field directly in Cartesian coordinate system based on near-field measurements without finding magnetic induction projection in prolate spheroidal coordinate system and in spherical coordinate system without their translation from prolate spheroidal coordinate system and in spherical coordinate system in Cartesian coordinate system and vice versa. Practical value. The possibility of a more than 10 times calculation time reduction of magnetic field induction of magnetic field elongated spheroidal sources and the possibility of a more than 4 times calculation time reduction of magnetic field induction of magnetic field spherical sources when magnetic field calculating of uncertain extended energy-saturated object based on development and application of analytical calculation method of magnetostatic field induction of spherical and spheroidal sources in the Cartesian coordinate system based on near-field measurements shown. References 50, tables 2, figures 4.

Author Biographies

B. I. Kuznetsov, Anatolii Pidhornyi Institute of Power Machines and Systems of the National Academy of Sciences of Ukraine

Doctor of Technical Science, Professor

T. B. Nikitina, Bakhmut Education Research and Professional Pedagogical Institute V.N. Karazin Kharkiv National University

Doctor of Technical Science, Professor

I. V. Bovdui, Anatolii Pidhornyi Institute of Power Machines and Systems of the National Academy of Sciences of Ukraine

PhD, Senior Research Scientist

K. V. Chunikhin, Anatolii Pidhornyi Institute of Power Machines and Systems of the National Academy of Sciences of Ukraine

PhD, Senior Research Scientist

V. V. Kolomiets, Bakhmut Education Research and Professional Pedagogical Institute V.N. Karazin Kharkiv National University

PhD, Assistant Professor

I. V. Nefodova, Bakhmut Education Research and Professional Pedagogical Institute V.N. Karazin Kharkiv National University

PhD, Assistant Professor

References

Rozov V.Yu., Getman A.V., Petrov S.V., Erisov A.V., Melanchenko A.G., Khoroshilov V.S., Schmidt I.R Spacecraft magnetism. Technical Electrodynamics. Thematic issue «Problems of modern electrical engineering», 2010, part 2, pp. 144-147. (Rus).

ECSS-E-HB-20-07A. Space engineering: Electromagnetic compatibility hand-book. ESA-ESTEC. Requirements & Standards Division. Noordwijk, Netherlands, 2012. 228 p.

Droughts S.A., Fedorov O.P. Space project Ionosat-Micro. Monograph. Kyiv, Akademperiodika Publ., 2013. 218 p. (Rus).

Holmes J.J. Exploitation of A Ship’s Magnetic Field Signatures. Springer Cham, 2006. 67 p. doi: https://doi.org/10.1007/978-3-031-01693-6.

Woloszyn M., Jankowski P. Simulation of ship’s deperming process using Opera 3D. 2017 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF) Book of Abstracts, 2017, pp. 1-2. doi: https://doi.org/10.1109/ISEF.2017.8090680.

Birsan M., Holtham P., Carmen. Using global optimisation techniques to solve the inverse problem for the computation of the static magnetic signature of ships. Defense Research Establishment Atlantic, 9 Grove St., PO Box 1012, Dartmouth, Nova Scotia, B2Y 3Z7, Canada.

Zuo C., Ma M., Pan Y., Li M., Yan H., Wang J., Geng P., Ouyang J. Multi-objective optimization design method of naval vessels degaussing coils. Proceedings of SPIE - The International Society for Optical Engineering, 2022, vol. 12506, art. no. 125060J. doi: https://doi.org/10.1117/12.2662888.

Baranov M.I., Rozov V.Y., Sokol Y.I. To the 100th anniversary of the National Academy of Sciences of Ukraine – the cradle of domestic science and technology. Electrical Engineering & Electromechanics, 2018, no. 5, pp. 3-11. doi: https://doi.org/10.20998/2074-272X.2018.5.01.

Chadebec O., Rouve L.-L., Coulomb J.-L. New methods for a fast and easy computation of stray fields created by wound rods. IEEE Transactions on Magnetics, 2002, vol. 38, no. 2, pp. 517-520. doi: https://doi.org/10.1109/20.996136.

Rozov V.Yu. Methods for reducing external magnetic fields of energy-saturated objects. Technical Electrodynamics, 2001, no. 1, pp. 16-20.

Rozov V.Y., Tkachenko O.O., Yerisov A.V., Grinchenko V.S. Analytical calculation of magnetic field of three-phase cable lines with two-point bonded shields. Technical Electrodynamics, 2017, no. 2, pp. 13-18. (Rus). doi: https://doi.org/10.15407/techned2017.02.013.

Rozov V.Y., Pelevin D.Y., Kundius K.D. Simulation of the magnetic field in residential buildings with built-in substations based on a two-phase multi-dipole model of a three-phase current conductor. Electrical Engineering & Electromechanics, 2023, no. 5, pp. 87-93. doi: https://doi.org/10.20998/2074-272X.2023.5.13.

Rozov V.Yu., Getman A.V., Kildishev A.V. Spatial harmonic analysis of the external magnetic field of extended objects in a prolate spheroidal coordinate system. Technical Electrodynamics, 1999, no. 1, pp. 7-11. (Rus).

Rozov V.Yu. Mathematical model of electrical equipment as a source of external magnetic field. Technical Electrodynamics, 1995, no. 2, pp. 3-7. (Rus).

Volokhov S.A., Dobrodeev P.N., Ivleva L.F. Spatial harmonic analysis of the external magnetic field of a technical object. Technical Electrodynamics, 1996, no. 2, pp. 3-8. (Rus).

Getman A.V. Analysis and synthesis of the magnetic field structure of technical objects on the basis of spatial harmonics. Dissertation thesis for the degree of Doctor of Technical Sciences. Kharkiv, 2018. 43 p. (Ukr).

Xiao C., Xiao C., Li G. Modeling the ship degaussing coil’s effect based on magnetization method. Communications in Computer and Information Science, 2012, vol. 289, pp. 62-69. doi: https://doi.org/10.1007/978-3-642-31968-6_8.

Wołoszyn M., Jankowski P. Ship’s de-perming process using coils lying on seabed. Metrology and Measurement Systems, 2019, vol. 26, no. 3, pp. 569-579. doi: https://doi.org/10.24425/mms.2019.129582.

Fan J., Zhao W., Liu S., Zhu Z. Summary of ship comprehensive degaussing. Journal of Physics: Conference Series, 2021, vol. 1827, no. 1, art. no. 012014. doi: https://doi.org/10.1088/1742-6596/1827/1/012014.

Getman A.V. Spatial harmonic analysis of the magnetic field of the sensor of the neutral plasma component. Eastern European Journal of Advanced Technologies, 2010, vol. 6, no. 5(48), pp. 35-38. doi: https://doi.org/10.15587/1729-4061.2010.3326.

Getman A. Ensuring the Magnetic Compatibility of Electronic Components of Small Spacecraft. 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), 2022, no. 1-4. doi: https://doi.org/10.1109/KhPIWeek57572.2022.9916339.

Acuña M.H. The design, construction and test of magnetically clean spacecraft – a practical guide. NASA/GSFC internal report. 2004.

Junge A., Marliani F. Prediction of DC magnetic fields for magnetic cleanliness on spacecraft. 2011 IEEE International Symposium on Electromagnetic Compatibility, 2011, pp. 834-839. doi: https://doi.org/10.1109/ISEMC.2011.6038424.

Lynn G.E., Hurt J.G., Harriger K.A. Magnetic control of satellite attitude. IEEE Transactions on Communication and Electronics, 1964, vol. 83, no. 74, pp. 570-575. doi: https://doi.org/10.1109/TCOME.1964.6539511.

Junge A., Trougnou L., Carrubba E. Measurement of Induced Equivalent Magnetic Dipole Moments for Spacecraft Units and Components. Proceedings ESA Workshop Aerospace EMC 2009 ESA WPP-299, 2009, vol. 4, no. 2, pp. 131-140.

Mehlem K., Wiegand A. Magnetostatic cleanliness of spacecraft. 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, 2010, pp. 936-944. doi: https://doi.org/10.1109/APEMC.2010.5475692.

Messidoro P., Braghin M., Grande M. Magnetic cleanliness verification approach on tethered satellite. 16th Space Simulation Conference: Confirming Spaceworthiness into the Next Millennium, 1991, pp. 415-434.

Mehlem K., Narvaez P. Magnetostatic cleanliness of the radioisotope thermoelectric generators (RTGs) of Cassini. 1999 IEEE International Symposium on Electromagnetic Compatability, 1999, vol. 2, pp. 899-904. doi: https://doi.org/10.1109/ISEMC.1999.810175.

Eichhorn W.L. Magnetic dipole moment determination by near-field analysis. Goddard Space Flight Center. Washington, D.C., National Aeronautics and Space Administration, 1972. NASA technical note, D 6685. 87 p.

Matsushima M., Tsunakawa H., Iijima Y., Nakazawa S., Matsuoka A., Ikegami S., Ishikawa T., Shibuya H., Shimizu H., Takahashi F. Magnetic Cleanliness Program Under Control of Electromagnetic Compatibility for the SELENE (Kaguya) Spacecraft. Space Science Reviews, 2010, vol. 154, no. 1-4, pp. 253-264. doi: https://doi.org/10.1007/s11214-010-9655-x.

Boghosian M., Narvaez P., Herman R. Magnetic testing, and modeling, simulation and analysis for space applications. 2013 IEEE International Symposium on Electromagnetic Compatibility, 2013, pp. 265-270. doi: https://doi.org/10.1109/ISEMC.2013.6670421.

Mehlem K. Multiple magnetic dipole modeling and field prediction of satellites. IEEE Transactions on Magnetics, 1978, vol. 14, no. 5, pp. 1064-1071. doi: https://doi.org/10.1109/TMAG.1978.1059983.

Thomsen P.L., Hansen F. Danish Ørsted Mission In-Orbit Experiences and Status of The Danish Small Satellite Programme. Annual AIAA/USU Conference on Small Satellites, 1999, pp. SSC99-I–8.

Kapsalis N.C., Kakarakis S.-D.J., Capsalis C.N. Prediction of multiple magnetic dipole model parameters from near field measurements employing stochastic algorithms. Progress In Electromagnetics Research Letters, 2012, vol. 34, pp. 111-122. doi: https://doi.org/10.2528/PIERL12030905.

Rozov V.Yu., Dobrodeev P.N., Volokhov S.A. Multipole model of a technical object and its magnetic center. Technical Electrodynamics, 2008, no. 2, pp. 3-8. (Rus).

Abramowitz M., Stegun I.A. (ed.). Handbook of mathematical functions with formulas, graphs, and mathematical tables. US Government Printing Office Publ., 1964. 1046 p.

Solomentsev O., Zaliskyi M., Averyanova Y., Ostroumov I., Kuzmenko N., Sushchenko O., Kuznetsov B., Nikitina T., Tserne E., Pavlikov V., Zhyla S., Dergachov K., Havrylenko O., Popov A., Volosyuk V., Ruzhentsev N., Shmatko O. Method of Optimal Threshold Calculation in Case of Radio Equipment Maintenance. Data Science and Security. Lecture Notes in Networks and Systems, 2022, vol. 462, pp. 69-79. doi: https://doi.org/10.1007/978-981-19-2211-4_6.

Ruzhentsev N., Zhyla S., Pavlikov V., Volosyuk V., Tserne E., Popov A., Shmatko O., Ostroumov I., Kuzmenko N., Dergachov K., Sushchenko O., Averyanova Y., Zaliskyi M., Solomentsev O., Havrylenko O., Kuznetsov B., Nikitina T. Radio-Heat Contrasts of UAVs and Their Weather Variability at 12 GHz, 20 GHz, 34 GHz, and 94 GHz Frequencies. ECTI Transactions on Electrical Engineering, Electronics, and Communications, 2022, vol. 20, no. 2, pp. 163-173. doi: https://doi.org/10.37936/ecti-eec.2022202.246878.

Havrylenko O., Dergachov K., Pavlikov V., Zhyla S., Shmatko O., Ruzhentsev N., Popov A., Volosyuk V., Tserne E., Zaliskyi M., Solomentsev O., Ostroumov I., Sushchenko O., Averyanova Y., Kuzmenko N., Nikitina T., Kuznetsov B. Decision Support System Based on the ELECTRE Method. Data Science and Security. Lecture Notes in Networks and Systems, 2022, vol. 462, pp. 295-304. doi: https://doi.org/10.1007/978-981-19-2211-4_26.

Shmatko O., Volosyuk V., Zhyla S., Pavlikov V., Ruzhentsev N., Tserne E., Popov A., Ostroumov I., Kuzmenko N., Dergachov K., Sushchenko O., Averyanova Y., Zaliskyi M., Solomentsev O., Havrylenko O., Kuznetsov B., Nikitina T. Synthesis of the optimal algorithm and structure of contactless optical device for estimating the parameters of statistically uneven surfaces. Radioelectronic and Computer Systems, 2021, no. 4, pp. 199-213. doi: https://doi.org/10.32620/reks.2021.4.16.

Volosyuk V., Zhyla S., Pavlikov V., Ruzhentsev N., Tserne E., Popov A., Shmatko O., Dergachov K., Havrylenko O., Ostroumov I., Kuzmenko N., Sushchenko O., Averyanova Yu., Zaliskyi M., Solomentsev O., Kuznetsov B., Nikitina T. Optimal Method for Polarization Selection of Stationary Objects Against the Background of the Earth’s Surface. International Journal of Electronics and Telecommunications, 2022, vol. 68, no. 1, pp. 83-89. doi: https://doi.org/10.24425/ijet.2022.139852.

Zhyla S., Volosyuk V., Pavlikov V., Ruzhentsev N., Tserne E., Popov A., Shmatko O., Havrylenko O., Kuzmenko N., Dergachov K., Averyanova Y., Sushchenko O., Zaliskyi M., Solomentsev O., Ostroumov I., Kuznetsov B., Nikitina T. Practical imaging algorithms in ultra-wideband radar systems using active aperture synthesis and stochastic probing signals. Radioelectronic and Computer Systems, 2023, no. 1, pp. 55-76. doi: https://doi.org/10.32620/reks.2023.1.05.

Maksymenko-Sheiko K.V., Sheiko T.I., Lisin D.O., Petrenko N.D. Mathematical and Computer Modeling of the Forms of Multi-Zone Fuel Elements with Plates. Journal of Mechanical Engineering, 2022, vol. 25, no. 4, pp. 32-38. doi: https://doi.org/10.15407/pmach2022.04.032.

Hontarovskyi P.P., Smetankina N.V., Ugrimov S.V., Garmash N.H., Melezhyk I.I. Computational Studies of the Thermal Stress State of Multilayer Glazing with Electric Heating. Journal of Mechanical Engineering, 2022, vol. 25, no. 1, pp. 14-21. doi: https://doi.org/10.15407/pmach2022.02.014.

Kostikov A.O., Zevin L.I., Krol H.H., Vorontsova A.L. The Optimal Correcting the Power Value of a Nuclear Power Plant Power Unit Reactor in the Event of Equipment Failures. Journal of Mechanical Engineering, 2022, vol. 25, no. 3, pp. 40-45. doi: https://doi.org/10.15407/pmach2022.03.040.

Rusanov A.V., Subotin V.H., Khoryev O.M., Bykov Y.A., Korotaiev P.O., Ahibalov Y.S. Effect of 3D Shape of Pump-Turbine Runner Blade on Flow Characteristics in Turbine Mode. Journal of Mechanical Engineering, 2022, vol. 25, no. 4, pp. 6-14. doi: https://doi.org/10.15407/pmach2022.04.006.

Gontarovskyi P., Smetankina N., Garmash N., Melezhyk I. Numerical analysis of stress-strain state of fuel tanks of launch vehicles in 3D formulation. Lecture Notes in Networks and Systems, 2021, vol. 188, pp. 609–619. doi: https://doi.org/10.1007/978-3-030-66717-7_52.

Kurennov S., Smetankina N., Pavlikov V., Dvoretskaya D., Radchenko V. Mathematical Model of the Stress State of the Antenna Radome Joint with the Load-Bearing Edging of the Skin Cutout. Lecture Notes in Networks and Systems, 2022, vol. 305, pp. 287-295. doi: https://doi.org/10.1007/978-3-030-83368-8_28.

Sushchenko O., Averyanova Y., Ostroumov I., Kuzmenko N., Zaliskyi M., Solomentsev O., Kuznetsov B., Nikitina T., Havrylenko O., Popov A., Volosyuk V., Shmatko O., Ruzhentsev N., Zhyla S., Pavlikov V., Dergachov K., Tserne E. Algorithms for Design of Robust Stabilization Systems. Lecture Notes in Computer Science, 2022, vol. 13375, pp. 198-213. doi: https://doi.org/10.1007/978-3-031-10522-7_15.

Sheinker A., Ginzburg B., Salomonski N., Yaniv A., Persky E. Estimation of Ship’s Magnetic Signature Using Multi-Dipole Modeling Method. IEEE Transactions on Magnetics, 2021, vol. 57, no. 5, pp. 1-8. doi: https://doi.org/10.1109/TMAG.2021.3062998.

Downloads

Published

2025-05-02

How to Cite

Kuznetsov, B. I., Nikitina, T. B., Bovdui, I. V., Chunikhin, K. V., Kolomiets, V. V., & Nefodova, I. V. (2025). Simplified method for analytically determining the external magnetostatic field of uncertain extended technical objects based on near-field measurements. Electrical Engineering & Electromechanics, (3), 65–75. https://doi.org/10.20998/2074-272X.2025.3.10

Issue

Section

Theoretical Electrical Engineering