Optimizing voltage control in AC microgrid systems with fuzzy logic strategies and performance assessment

Authors

DOI:

https://doi.org/10.20998/2074-272X.2025.3.02

Keywords:

microgrid, droop control technique, distributed generation inverters, PI control, voltage control, virtual impedance, fuzzy logic

Abstract

Introduction. Microgrids (MGs) have garnered significant attention for their numerous advantages, providing a solution for powering remote and distant locations while enhancing system reliability. In MGs, distributed generation inverters generally operate in parallel with the droop control strategies. This study focuses on the approach based on the P-f/Q-V droop control technique with virtual impedance for AC MG management. Essentially, the virtual impedance loop aims to decouple reactive and active power control without the need for additional physical components. Novelty. This research proposes enhancing voltage control in AC MG systems by introducing new methods of various control strategies, including PI and Fuzzy Logic Controller (FLC), and evaluating the effectiveness of each approach. The mathematical model of a system is always an approximation of real systems, variations or errors between mathematical models and real systems are referred to as uncertainty. This concept of uncertainty is present in both signals and models. In our study, uncertainties may involve factors related to the filter LC components. By employing advanced control strategies like FLC, the purpose of this research aims to contribute to the optimization and reliability of AC MG systems through the improvement of voltage control, which leads to guaranteed equitable power-sharing. Results. The major advantages of the FLC are robustness for any variation on the system and fast response. MATLAB software is used to simulate and validate the suggested control. Practical value. The simulation results show that the suggested control performs better in precise tracking optimization and robustness for all disturbances on the system compared to a PI controller. References 24, table 5, figures 11.

Author Biographies

S. Adiche, University of Tiaret

PhD Student, Department of Electrical Engineering, L2GEGI Laboratory

M. Larbi, University of Tiaret

Full Professor, Department of Electrical Engineering, L2GEGI Laboratory

D. Toumi, University of Tiaret

Senior Lecturer, Department of Electrical Engineering, L2GEGI Laboratory

References

Abbasi M., Abbasi E., Li L., Aguilera R.P., Lu D., Wang F. Review on the Microgrid Concept, Structures, Components, Communication Systems, and Control Methods. Energies, 2023, vol. 16, no. 1, art. no. 484. doi: https://doi.org/10.3390/en16010484.

Manikandan K., Sasikumar S., Arulraj R. A novelty approach to solve an economic dispatch problem for a renewable integrated micro-grid using optimization techniques. Electrical Engineering & Electromechanics, 2023, no. 4, pp. 83-89. doi: https://doi.org/10.20998/2074-272X.2023.4.12.

Bakhshi-Jafarabadi R., Lekić A., Marvasti F.D., de Jesus Chavez J., Popov M. Analytical Overvoltage and Power-Sharing Control Method for Photovoltaic-Based Low-Voltage Islanded Microgrid. IEEE Access, 2023, no. 11, pp. 134286-134297. doi: https://doi.org/10.1109/ACCESS.2023.3336945.

Shahgholian G. A brief review on microgrids: Operation, applications, modeling, and control. International Transactions on Electrical Energy Systems, 2021, vol. 31, no. 6, art. no. e12885. doi: https://doi.org/10.1002/2050-7038.12885.

Uddin M., Mo H., Dong D., Elsawah S., Zhu J., Guerrero J.M. Microgrids: A review, outstanding issues and future trends. Energy Strategy Reviews, 2023, vol. 49, art. no. 101127. doi: https://doi.org/10.1016/j.esr.2023.101127.

Hirsch A., Parag Y., Guerrero J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renewable and Sustainable Energy Reviews, 2018, vol. 90, pp. 402-411. doi: https://doi.org/10.1016/j.rser.2018.03.040.

Wang Y., Li Y., Cao Y., Tan Y., He L., Han J. Hybrid AC/DC microgrid architecture with comprehensive control strategy for energy management of smart building. International Journal of Electrical Power & Energy Systems, 2018, vol. 101, pp. 151-161. doi: https://doi.org/10.1016/j.ijepes.2018.02.048.

Saeed M.H., Fangzong W., Kalwar B.A., Iqbal S. A Review on Microgrids’ Challenges & Perspectives. IEEE Access, 2021, vol. 9, pp. 166502-166517. doi: https://doi.org/10.1109/ACCESS.2021.3135083.

Hosseinimoghadam S.M.S., Roghanian H., Dashtdar M., Razavi S.M. Power-Sharing Control in an Islanded Microgrid using Virtual Impedance. 2020 8th International Conference on Smart Grid (IcSmartGrid), 2020, pp. 73-77. doi: https://doi.org/10.1109/icSmartGrid49881.2020.9144802.

Siddaraj S., Yaragatti U.R., Nagendrappa H., Jhunjhunwala V.K. Autonomous microgrid based parallel inverters using droop controller for improved power sharing. Bulletin of Electrical Engineering and Informatics, 2020, vol. 9, no. 6, pp. 2302-2310. doi: https://doi.org/10.11591/eei.v9i6.2663.

Benchouia M.T., Ghadbane I., Golea A., Srairi K., Benbouzid M.E.H. Implementation of adaptive fuzzy logic and PI controllers to regulate the DC bus voltage of shunt active power filter. Applied Soft Computing, 2015, vol. 28, pp. 125-131. doi: https://doi.org/10.1016/j.asoc.2014.10.043.

Ikhe A., Pahariya Y. Voltage regulation using three phase electric spring by fuzzy logic controller. Electrical Engineering & Electromechanics, 2023, no. 4, pp. 14-18. doi: https://doi.org/10.20998/2074-272X.2023.4.02.

Yilmaz U., Kircay A., Borekci S. PV system fuzzy logic MPPT method and PI control as a charge controller. Renewable and Sustainable Energy Reviews, 2018, vol. 81, pp. 994-1001. doi: https://doi.org/10.1016/j.rser.2017.08.048.

Has Z., Rosyidi A.Z., Pakaya I., Mardiyah N.A., Nurhadi N., Effendy M. Integrated Frequency Control of Microhydro Power Plant Based Flow Valve Control and Electronic Load Controller. 2018 IEEE Conference on Systems, Process and Control (ICSPC), 2018, pp. 244-249. doi: https://doi.org/10.1109/SPC.2018.8704153.

Adiche S, Larbi M., Toumi D. Improvement of voltage control in AC microgrid using neural network-based adaptive PI controller. 1st International Conference on Renewable Energies and Power Systems (ICREPS'2024), University Centre of Naama, Algeria, 2024.

Matayoshi H., Kinjo M., Rangarajan S.S., Ramanathan G.G., Hemeida A.M., Senjyu T. Islanding operation scheme for DC microgrid utilizing pseudo Droop control of photovoltaic system. Energy for Sustainable Development, 2020, vol. 55, pp. 95-104. doi: https://doi.org/10.1016/j.esd.2020.01.004.

Khefifi N. Élaboration de stratégies de contrôle-commande basées sur la passivité pour le pilotage d’un micro-réseau de génération décentralisée de type AC en mode autonome. PhD Dissertation, Nantes, 2021. Available at: https://theses.fr/2021NANT4031 (Accessed: 23 may 2024). (Fra).

Adiche S., Larbi M., Toumi D. Performance comparison between PI and fuzzy logic controllers of AC microgrids distributed generators. The 6th International Conference on Electrotechnics, Oran, 2023.

Pournazarian B., Seyedalipour S.S., Lehtonen M., Taheri S., Pouresmaeil E. Virtual Impedances Optimization to Enhance Microgrid Small-Signal Stability and Reactive Power Sharing. IEEE Access, 2020, vol. 8, pp. 139691-139705. doi: https://doi.org/10.1109/ACCESS.2020.3013031.

Zambroni de Souza A.C., Castilla M. (Eds.). Microgrids Design and Implementation. Springer Publ., 2019. 538 p. doi: https://doi.org/10.1007/978-3-319-98687-6.

Sepehrzad R., Khojasteh Rahimi M., Al-Durra A., Allahbakhshi M., Moridi A. Optimal energy management of distributed generation in micro-grid to control the voltage and frequency based on PSO-adaptive virtual impedance method. Electric Power Systems Research, 2022, vol. 208, art. no. 107881. doi: https://doi.org/10.1016/j.epsr.2022.107881.

Al Sumarmad K.A., Sulaiman N., Wahab N.I.A., Hizam H. Energy Management and Voltage Control in Microgrids Using Artificial Neural Networks, PID, and Fuzzy Logic Controllers. Energies, 2022, vol. 15, no. 1, art. no. 303. doi: https://doi.org/10.3390/en15010303.

Bouzid A.E.M. Élaboration d'une méthode de contrôle pour améliorer la robustesse d'un micro réseau électrique. PhD Thesis, University of Quebec at Trois-Rivières, 2017. 229 p. Available at: https://depot-e.uqtr.ca/id/eprint/8169/1/031873046.pdf (Accessed: 23 may 2024). (Fra).

IEEE Std 1547.2-2008. IEEE Application Guide for IEEE Std 1547(TM). IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems. 2009, 217 p. doi: https://doi.org/10.1109/IEEESTD.2008.4816078.

Downloads

Published

2025-05-02

How to Cite

Adiche, S., Larbi, M., & Toumi, D. (2025). Optimizing voltage control in AC microgrid systems with fuzzy logic strategies and performance assessment. Electrical Engineering & Electromechanics, (3), 11–17. https://doi.org/10.20998/2074-272X.2025.3.02

Issue

Section

Electrotechnical complexes and Systems