Improvement teaching-learning-based optimization algorithm for solar cell parameter extraction in photovoltaic systems
DOI:
https://doi.org/10.20998/2074-272X.2025.3.06Keywords:
photovoltaic system, teaching-learning-based optimization, Newton-Raphson method, parameter optimizationAbstract
Introduction. This study investigates parameter extraction methods for solar cell analytical models, which are crucial for accurate photovoltaic (PV) system design and performance. Problem. Traditional single-diode models, while widely used, often lack precision, leading to inefficiencies in parameter extraction essential for reliable PV systems. Goal. The work aims to improve the Teaching-Learning-Based Optimization (TLBO) algorithm to enhance the accuracy of parameter extraction in PV models. Methodology. We adopt an enhanced single-diode model, integrating modifications into the TLBO algorithm, including dynamic teaching factor adjustment, refined partner selection, and targeted local searches with the fmincon function. Comparative analysis with experimental data from four PV systems validates the model’s accuracy. Results. The enhanced TLBO algorithm achieves superior convergence and reliability in parameter extraction, as evidenced by 500 independent runs. Originality. Key contributions include methodological improvements such as dynamic adjustment of the teaching factor and a new approach to partner selection, which significantly optimizes the algorithm’s performance. Practical value. This research provides a robust framework for solar cell parameter extraction, offering practical benefits for PV system designers and researchers in improving model accuracy and efficiency. References 35, table 1, figures 15.
References
Maniraj B., Peer Fathima A. Parameter extraction of solar photovoltaic modules using various optimization techniques: a review. Journal of Physics: Conference Series, 2020, vol. 1716, no. 1, art. no. 012001. doi: https://doi.org/10.1088/1742-6596/1716/1/012001.
Tong N.T., Pora W. A parameter extraction technique exploiting intrinsic properties of solar cells. Applied Energy, 2016, vol. 176, pp. 104-115. doi: https://doi.org/10.1016/j.apenergy.2016.05.064.
Abbassi R., Abbassi A., Jemli M., Chebbi S. Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches. Renewable and Sustainable Energy Reviews, 2018, vol. 90, pp. 453-474. doi: https://doi.org/10.1016/j.rser.2018.03.011.
Abdulrazzaq A.K., Bognár G., Plesz B. Accurate method for PV solar cells and modules parameters extraction using I–V curves. Journal of King Saud University - Engineering Sciences, 2022, vol. 34, no. 1, pp. 46-56. doi: https://doi.org/10.1016/j.jksues.2020.07.008.
Beigi A.M., Maroosi A. Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search Algorithms. Solar Energy, 2018, vol. 171, pp. 435-446. doi: https://doi.org/10.1016/j.solener.2018.06.092.
Houssein E.H., Abdelminaam D.S., Hassan H.N., Al-Sayed M.M., Nabil E. A Hybrid Barnacles Mating Optimizer Algorithm With Support Vector Machines for Gene Selection of Microarray Cancer Classification. IEEE Access, 2021, vol. 9, pp. 64895-64905. doi: https://doi.org/10.1109/ACCESS.2021.3075942.
Houssein E.H., Helmy B.E.-D., Elngar A.A., Abdelminaam D.S., Shaban H. An Improved Tunicate Swarm Algorithm for Global Optimization and Image Segmentation. IEEE Access, 2021, vol. 9, pp. 56066-56092. doi: https://doi.org/10.1109/ACCESS.2021.3072336.
Salama AbdELminaam D., Almansori A.M., Taha M., Badr E. A deep facial recognition system using computational intelligent algorithms. PLOS ONE, 2020, vol. 15, no. 12, art. no. e0242269. doi: https://doi.org/10.1371/journal.pone.0242269.
Saadaoui D., Elyaqouti M., Assalaou K., Ben Hmamou D., Lidaighbi S. Parameters optimization of solar PV cell/module using genetic algorithm based on non-uniform mutation. Energy Conversion and Management: X, 2021, vol. 12, art. no. 100129. doi: https://doi.org/10.1016/j.ecmx.2021.100129.
Abdulrazzaq A.K., Bognár G., Plesz B. Evaluation of different methods for solar cells/modules parameters extraction. Solar Energy, 2020, vol. 196, pp. 183-195. doi: https://doi.org/10.1016/j.solener.2019.12.010.
Elkholy A., Abou El-Ela A.A. Optimal parameters estimation and modelling of photovoltaic modules using analytical method. Heliyon, 2019, vol. 5, no. 7, art. no. e02137. doi: https://doi.org/10.1016/j.heliyon.2019.e02137.
Shaheen A.M., El-Seheimy R.A., Xiong G., Elattar E., Ginidi A.R. Parameter identification of solar photovoltaic cell and module models via supply demand optimizer. Ain Shams Engineering Journal, 2022, vol. 13, no. 4, art. no. 101705. doi: https://doi.org/10.1016/j.asej.2022.101705.
Ćalasan M., Jovanović D., Rubežić V., Mujović S., Đukanović S. Estimation of Single-Diode and Two-Diode Solar Cell Parameters by Using a Chaotic Optimization Approach. Energies, 2019, vol. 12, no. 21, art. no. 4209. doi: https://doi.org/10.3390/en12214209.
Biswas P.P., Suganthan P.N., Wu G., Amaratunga G.A.J. Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm. Renewable Energy, 2019, vol. 132, pp. 425-438. doi: https://doi.org/10.1016/j.renene.2018.07.152.
Xiong G., Zhang J., Yuan X., Shi D., He Y. Application of Symbiotic Organisms Search Algorithm for Parameter Extraction of Solar Cell Models. Applied Sciences, 2018, vol. 8, no. 11, art. no. 2155. doi: https://doi.org/10.3390/app8112155.
Gao X., Cui Y., Hu J., Xu G., Wang Z., Qu J., Wang H. Parameter extraction of solar cell models using improved shuffled complex evolution algorithm. Energy Conversion and Management, 2018, vol. 157, pp. 460-479. doi: https://doi.org/10.1016/j.enconman.2017.12.033.
Zhang Y., Wang Y., Li S., Yao F., Tao L., Yan Y., Zhao J., Gao Z. An enhanced adaptive comprehensive learning hybrid algorithm of Rao-1 and JAYA algorithm for parameter extraction of photovoltaic models. Mathematical Biosciences and Engineering, 2022, vol. 19, no. 6, pp. 5610-5637. doi: https://doi.org/10.3934/mbe.2022263.
Eslami M., Akbari E., Seyed Sadr S.T., Ibrahim B.F. A novel hybrid algorithm based on rat swarm optimization and pattern search for parameter extraction of solar photovoltaic models. Energy Science & Engineering, 2022, vol. 10, no. 8, pp. 2689-2713. doi: https://doi.org/10.1002/ese3.1160.
Sallam K.M., Hossain M.A., Chakrabortty R.K., Ryan M.J. An improved gaining-sharing knowledge algorithm for parameter extraction of photovoltaic models. Energy Conversion and Management, 2021, vol. 237, art. no. 114030. doi: https://doi.org/10.1016/j.enconman.2021.114030.
Ramadan A., Kamel S., Hussein M.M., Hassan M.H. A New Application of Chaos Game Optimization Algorithm for Parameters Extraction of Three Diode Photovoltaic Model. IEEE Access, 2021, vol. 9, pp. 51582-51594. doi: https://doi.org/10.1109/ACCESS.2021.3069939.
Liang J., Qiao K., Yu K., Ge S., Qu B., Xu R., Li K. Parameters estimation of solar photovoltaic models via a self-adaptive ensemble-based differential evolution. Solar Energy, 2020, vol. 207, pp. 336-346. doi: https://doi.org/10.1016/j.solener.2020.06.100.
Dhiman G., Kaur A. STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Engineering Applications of Artificial Intelligence, 2019, vol. 82, pp. 148-174. doi: https://doi.org/10.1016/j.engappai.2019.03.021.
Kler D., Goswami Y., Rana K.P.S., Kumar V. A novel approach to parameter estimation of photovoltaic systems using hybridized optimizer. Energy Conversion and Management, 2019, vol. 187, pp. 486-511. doi: https://doi.org/10.1016/j.enconman.2019.01.102.
Zhou W., Wang P., Heidari A.A., Zhao X., Turabieh H., Mafarja M., Chen H. Metaphor-free dynamic spherical evolution for parameter estimation of photovoltaic modules. Energy Reports, 2021, vol. 7, pp. 5175-5202. doi: https://doi.org/10.1016/j.egyr.2021.07.041.
Chennoufi K., Ferfra M. Parameters extraction of photovoltaic modules using a combined analytical - numerical method. 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech), 2020, pp. 1-7. doi: https://doi.org/10.1109/CloudTech49835.2020.9365901.
Ginidi A., Ghoneim S.M., Elsayed A., El-Sehiemy R., Shaheen A., El-Fergany A. Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems. Sustainability, 2021, vol. 13, no. 16, art. no. 9459. doi: https://doi.org/10.3390/su13169459.
Rezk H., Babu T.S., Al-Dhaifallah M., Ziedan H.A. A robust parameter estimation approach based on stochastic fractal search optimization algorithm applied to solar PV parameters. Energy Reports, 2021, vol. 7, pp. 620-640. doi: https://doi.org/10.1016/j.egyr.2021.01.024.
Ginidi A.R., Shaheen A.M., El-Sehiemy R.A., Elattar E. Supply demand optimization algorithm for parameter extraction of various solar cell models. Energy Reports, 2021, vol. 7, pp. 5772-5794. doi: https://doi.org/10.1016/j.egyr.2021.08.188.
Rao R.V., Savsani V.J., Vakharia D.P. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 2011, vol. 43, no. 3, pp. 303-315. doi: https://doi.org/10.1016/j.cad.2010.12.015.
Saeed H., Mehmood T., Khan F.A., Shah M.S., Ullah M.F., Ali H. An improved search ability of particle swarm optimization algorithm for tracking maximum power point under shading conditions. Electrical Engineering & Electromechanics, 2022, no. 2, pp. 23-28. doi: https://doi.org/10.20998/2074-272X.2022.2.04.
Khan S.A., Mahmood T., Awan K.S. A nature based novel maximum power point tracking algorithm for partial shading conditions. Electrical Engineering & Electromechanics, 2021, no. 6, pp. 54-63. doi: https://doi.org/10.20998/2074-272X.2021.6.08.
Louarem S., Kebbab F.Z., Salhi H., Nouri H. A comparative study of maximum power point tracking techniques for a photovoltaic grid-connected system. Electrical Engineering & Electromechanics, 2022, no. 4, pp. 27-33. doi: https://doi.org/10.20998/2074-272X.2022.4.04.
Parimalasundar E., Kumar N.M.G., Geetha P., Suresh K. Performance investigation of modular multilevel inverter topologies for photovoltaic applications with minimal switches. Electrical Engineering & Electromechanics, 2022, no. 6, pp. 28-34. doi: https://doi.org/10.20998/2074-272X.2022.6.05.
Sai Thrinath B.V., Prabhu S., Meghya Nayak B. Power quality improvement by using photovoltaic based shunt active harmonic filter with Z-source inverter converter. Electrical Engineering & Electromechanics, 2022, no. 6, pp. 35-41. doi: https://doi.org/10.20998/2074-272X.2022.6.06.
Dehghani M., Montazeri Z., Ehsanifar A., Seifi A.R., Ebadi M.J., Grechko O.M. Planning of energy carriers based on final energy consumption using dynamic programming and particle swarm optimization. Electrical Engineering & Electromechanics, 2018, no. 5, pp. 62-71. doi: https://doi.org/10.20998/2074-272X.2018.5.10.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 H. Khaterchi, M. H. Moulahi, A. Jeridi, R. Ben Messaoud, A. Zaafouri

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.