Method for prediction and control by uncertain microsatellite magnetic cleanliness based on calculation and compensation magnetic field spatial harmonics
DOI:
https://doi.org/10.20998/2074-272X.2024.1.04Keywords:
microsatellite, magnetic cleanliness, magnetic field spatial spherical harmonics, prediction, control, measurements, uncertaintyAbstract
Aim. Development of method for prediction and control the microsatellite magnetic cleanliness taking into account the uncertainties of the magnetic characteristics of the microsatellite, based on calculation the magnetic field spatial spherical harmonics in the area of the onboard magnetometer installation and using compensating multipoles. Methodology. Spatial spherical harmonics of microsatellite magnetic field in the area of the onboard magnetometer installation calculated as solution of nonlinear minimax optimization problem based on near field measurements for prediction far spacecraft magnetic field magnitude. Nonlinear objective function calculated as the weighted sum of squared residuals between the measured and predicted magnetic field. Values of the compensating dipoles, quadrupoles and octupoles and coordinates of them placement inside the spaceship for compensation of the dipoles, quadrupoles and octupoles components of the microsatellite initial magnetic field also calculated as solution of nonlinear minimax optimization problem. Both solutions of this nonlinear minimax optimization problems calculated based on particle swarm nonlinear optimization algorithms. Results. Results of prediction spacecraft far magnetic field magnitude based on spacecraft spatial spherical harmonics of the magnetic field using near field measurements and compensation of the dipoles, quadrupoles and octupoles components of the initial magnetic field with consideration of spacecraft magnetic characteristics uncertainty for ensuring the microsatellite magnetic cleanliness. Originality. The method for prediction and control by spacecraft magnetic cleanliness based on calculation spatial spherical harmonics of the magnetic field in the area of the onboard magnetometer installation using compensation of the dipoles, quadrupoles and octupoles components of the initial magnetic field with consideration of magnetic characteristics uncertainty is developed. Practical value. The important practical problem of ensuring the magnetic cleanliness of the «Sich-2» microsatellite family based on the spatial spherical harmonics of the magnetic field model using the compensation of the dipole, quadrupole and octupole components of the output magnetic field of the sensor for the kinetic parameters of the neutral component of the space plasma at the point of installation of the on-board magnetometer LEMI-016 by setting the compensating dipole, quadrupole and octupole with consideration of spacecraft magnetic characteristics uncertainty solved.
References
Rozov V.Yu., Getman A.V., Petrov S.V. Spacecraft magnetism. Technical Electrodynamics. Thematic issue «Problems of modern electrical engineering», 2010, part 2, pp. 144-147. (Rus).
Rozov V.Yu. Methods for reducing external magnetic fields of energy-saturated objects. Technical Electrodynamics, 2001, no. 1, pp. 16-20.
Birsan M., Holtham P., Carmen. Using global optimisation techniques to solve the inverse problem for the computation of the static magnetic signature of ships. Defense Research Establishment Atlantic, 9 Grove St., PO Box 1012, Dartmouth, Nova Scotia, B2Y 3Z7, Canada.
Acuña M.H. The design, construction and test of magnetically clean spacecraft – a practical guide. NASA/GSFC internal report. 2004.
Junge A., Marliani F. Prediction of DC magnetic fields for magnetic cleanliness on spacecraft. 2011 IEEE International Symposium on Electromagnetic Compatibility, 2011, pp. 834-839. doi: https://doi.org/10.1109/ISEMC.2011.6038424.
Lynn G.E., Hurt J.G., Harriger K.A. Magnetic control of satellite attitude. IEEE Transactions on Communication and Electronics, 1964, vol. 83, no. 74, pp. 570-575. doi: https://doi.org/10.1109/TCOME.1964.6539511.
Junge A., Trougnou L., Carrubba E. Measurement of Induced Equivalent Magnetic Dipole Moments for Spacecraft Units and Components. Proceedings ESA Workshop Aerospace EMC 2009 ESA WPP-299, 2009, vol. 4, no. 2, pp. 131-140.
Mehlem K., Wiegand A. Magnetostatic cleanliness of spacecraft. 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, 2010, pp. 936-944. doi: https://doi.org/10.1109/APEMC.2010.5475692.
Messidoro P., Braghin M., Grande M. Magnetic cleanliness verification approach on tethered satellite. 16th Space Simulation Conference: Confirming Spaceworthiness into the Next Millennium, 1991, pp. 415-434.
Mehlem K., Narvaez P. Magnetostatic cleanliness of the radioisotope thermoelectric generators (RTGs) of Cassini. 1999 IEEE International Symposium on Electromagnetic Compatability, 1999, vol. 2, pp. 899-904. doi: https://doi.org/10.1109/ISEMC.1999.810175.
Eichhorn W.L. Magnetic dipole moment determination by near-field analysis. Goddard Space Flight Center. Washington, D.C., National Aeronautics and Space Administration, 1972. NASA technical note, D 6685. 87 p.
Matsushima M., Tsunakawa H., Iijima Y., Nakazawa S., Matsuoka A., Ikegami S., Ishikawa T., Shibuya H., Shimizu H., Takahashi F. Magnetic Cleanliness Program Under Control of Electromagnetic Compatibility for the SELENE (Kaguya) Spacecraft. Space Science Reviews, 2010, vol. 154, no. 1-4, pp. 253-264. doi: https://doi.org/10.1007/s11214-010-9655-x.
Boghosian M., Narvaez P., Herman R. Magnetic testing, and modeling, simulation and analysis for space applications. 2013 IEEE International Symposium on Electromagnetic Compatibility, 2013, pp. 265-270. doi: https://doi.org/10.1109/ISEMC.2013.6670421.
Mehlem K. Multiple magnetic dipole modeling and field prediction of satellites. IEEE Transactions on Magnetics, 1978, vol. 14, no. 5, pp. 1064-1071. doi: https://doi.org/10.1109/TMAG.1978.1059983.
Thomsen P.L., Hansen F. Danish Ørsted Mission In-Orbit Experiences and Status of The Danish Small Satellite Programme. Annual AIAA/USU Conference on Small Satellites, 1999, pp. SSC99-I–8.
Droughts S.A., Fedorov O.P. Space project Ionosat-Micro. Monograph. Kyiv, Akademperiodika Publ., 2013. 218 p. (Rus).
Getman A.V. Analysis and synthesis of the magnetic field structure of technical objects on the basis of spatial harmonics. Dissertation thesis for the degree of Doctor of Technical Sciences. Kharkiv, 2018. 43 p. (Ukr).
Getman A.V. Spatial harmonic analysis of the magnetic field of the sensor of the neutral plasma component. Eastern European Journal of Advanced Technologies, 2010, vol. 6, no. 5(48), pp. 35-38. doi: https://doi.org/10.15587/1729-4061.2010.3326.
ECSS-E-HB-20-07A. Space engineering: Electromagnetic compatibility hand-book. ESA-ESTEC. Requirements & Standards Division. Noordwijk, Netherlands, 2012. 228 p.
Rozov V.Yu. Mathematical model of electrical equipment as a source of external magnetic field. Technical Electrodynamics, 1995, no. 2, pp. 3-7. (Rus).
Rozov V.Yu., Dobrodeev P.N., Volokhov S.A. Multipole model of a technical object and its magnetic center. Technical Electrodynamics, 2008, no. 2, pp. 3-8. (Rus).
Rozov V.Yu. Selective compensation of spatial harmonics of the magnetic field of energy-saturated objects. Technical Electrodynamics, 2002, no. 1, pp. 8-13. (Rus).
Rozov V.Y., Reutskyi S.Y., Pelevin D.Y., Yakovenko V.N. The research of magnetic field of high-voltage AC transmissions lines. Technical Electrodynamics, 2012, no. 1, pp. 3-9. (Rus).
Volokhov S.A., Dobrodeev P.N., Ivleva L.F. Spatial harmonic analysis of the external magnetic field of a technical object. Technical Electrodynamics, 1996, no. 2, pp. 3-8. (Rus).
Getman A. Ensuring the Magnetic Compatibility of Electronic Components of Small Spacecraft. 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), 2022, no. 1-4. doi: https://doi.org/10.1109/KhPIWeek57572.2022.9916339.
Chadebec O., Rouve L.-L., Coulomb J.-L. New methods for a fast and easy computation of stray fields created by wound rods. IEEE Transactions on Magnetics, 2002, vol. 38, no. 2, pp. 517-520. doi: https://doi.org/10.1109/20.996136.
Rozov V.Y., Pelevin D.Y., Kundius K.D. Simulation of the magnetic field in residential buildings with built-in substations based on a two-phase multi-dipole model of a three-phase current conductor. Electrical Engineering & Electromechanics, 2023, no. 5, pp. 87-93. doi: https://doi.org/10.20998/2074-272X.2023.5.13.
Rozov V.Yu., Kundius K.D., Pelevin D.Ye. Active shielding of external magnetic field of built-in transformer substations. Electrical Engineering & Electromechanics, 2020, no. 3, pp. 24-30. doi: https://doi.org/10.20998/2074-272x.2020.3.04.
Martynenko G. Analytical Method of the Analysis of Electromagnetic Circuits of Active Magnetic Bearings for Searching Energy and Forces Taking into Account Control Law. 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek), 2020, pp. 86-91. doi: https://doi.org/10.1109/KhPIWeek51551.2020.9250138.
Martynenko G., Martynenko V. Rotor Dynamics Modeling for Compressor and Generator of the Energy Gas Turbine Unit with Active Magnetic Bearings in Operating Modes. 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP), 2020, pp. 1-4. doi: https://doi.org/10.1109/PAEP49887.2020.9240781.
Ostroverkhov M., Trinchuk D. Increasing the Efficiency of Electric Vehicle Drives with Supercapacitors in Power Supply. 2020 IEEE 7th International Conference on Energy Smart Systems (ESS), 2020, pp. 258-261. doi: https://doi.org/10.1109/ESS50319.2020.9160291.
Ostroverkhov N., Buryk N. Control System with Field Weakening of Synchronous Motor Drive. 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP), 2020, pp. 1-5. doi: https://doi.org/10.1109/PAEP49887.2020.9240903.
Chen C.S., Reutskiy S.Y., Rozov V.Y. The method of the fundamental solutions and its modifications for electromagnetic field problems. Computer Assisted Mechanics and Engineering Sciences, 2009, vol. 16, no. 1, pp. 21-33.
Tytiuk V., Chornyi O., Baranovskaya M., Serhiienko S., Zachepa I., Tsvirkun L., Kuznetsov V., Tryputen N. Synthesis of a fractional-order PIλDμ-controller for a closed system of switched reluctance motor control. Eastern-European Journal of Enterprise Technologies, 2019, no. 2 (98), pp. 35-42. doi: https://doi.org/10.15587/1729-4061.2019.160946.
Zagirnyak M., Serhiienko S., Chornyi O. Innovative technologies in laboratory workshop for students of technical specialties. 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), 2017, pp. 1216-1220. doi: https://doi.org/10.1109/UKRCON.2017.8100446.
Chornyi O., Serhiienko S. A virtual complex with the parametric adjustment to electromechanical system parameters. Technical Electrodynamics, 2019, pp. 38-41. doi: https://doi.org/10.15407/techned2019.01.038.
Shchur I., Kasha L., Bukavyn M. Efficiency Evaluation of Single and Modular Cascade Machines Operation in Electric Vehicle. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 2020, pp. 156-161. doi: https://doi.org/10.1109/tcset49122.2020.235413.
Shchur I., Turkovskyi V. Comparative Study of Brushless DC Motor Drives with Different Configurations of Modular Multilevel Cascaded Converters. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 2020, pp. 447-451. doi: https://doi.org/10.1109/tcset49122.2020.235473.
Solomentsev O., Zaliskyi M., Averyanova Y., Ostroumov I., Kuzmenko N., Sushchenko O., Kuznetsov B., Nikitina T., Tserne E., Pavlikov V., Zhyla S., Dergachov K., Havrylenko O., Popov A., Volosyuk V., Ruzhentsev N., Shmatko O. Method of Optimal Threshold Calculation in Case of Radio Equipment Maintenance. Data Science and Security. Lecture Notes in Networks and Systems, 2022, vol. 462, pp. 69-79. doi: https://doi.org/10.1007/978-981-19-2211-4_6.
Ruzhentsev N., Zhyla S., Pavlikov V., Volosyuk V., Tserne E., Popov A., Shmatko O., Ostroumov I., Kuzmenko N., Dergachov K., Sushchenko O., Averyanova Y., Zaliskyi M., Solomentsev O., Havrylenko O., Kuznetsov B., Nikitina T. Radio-Heat Contrasts of UAVs and Their Weather Variability at 12 GHz, 20 GHz, 34 GHz, and 94 GHz Frequencies. ECTI Transactions on Electrical Engineering, Electronics, and Communications, 2022, vol. 20, no. 2, pp. 163-173. doi: https://doi.org/10.37936/ecti-eec.2022202.246878.
Havrylenko O., Dergachov K., Pavlikov V., Zhyla S., Shmatko O., Ruzhentsev N., Popov A., Volosyuk V., Tserne E., Zaliskyi M., Solomentsev O., Ostroumov I., Sushchenko O., Averyanova Y., Kuzmenko N., Nikitina T., Kuznetsov B. Decision Support System Based on the ELECTRE Method. Data Science and Security. Lecture Notes in Networks and Systems, 2022, vol. 462, pp. 295-304. doi: https://doi.org/10.1007/978-981-19-2211-4_26.
Shmatko O., Volosyuk V., Zhyla S., Pavlikov V., Ruzhentsev N., Tserne E., Popov A., Ostroumov I., Kuzmenko N., Dergachov K., Sushchenko O., Averyanova Y., Zaliskyi M., Solomentsev O., Havrylenko O., Kuznetsov B., Nikitina T. Synthesis of the optimal algorithm and structure of contactless optical device for estimating the parameters of statistically uneven surfaces. Radioelectronic and Computer Systems, 2021, no. 4, pp. 199-213. doi: https://doi.org/10.32620/reks.2021.4.16.
Volosyuk V., Zhyla S., Pavlikov V., Ruzhentsev N., Tserne E., Popov A., Shmatko O., Dergachov K., Havrylenko O., Ostroumov I., Kuzmenko N., Sushchenko O., Averyanova Yu., Zaliskyi M., Solomentsev O., Kuznetsov B., Nikitina T. Optimal Method for Polarization Selection of Stationary Objects Against the Background of the Earth’s Surface. International Journal of Electronics and Telecommunications, 2022, vol. 68, no. 1, pp. 83-89. doi: https://doi.org/10.24425/ijet.2022.139852.
Halchenko V., Trembovetska R., Tychkov V., Storchak A. Nonlinear surrogate synthesis of the surface circular eddy current probes. Przegląd Elektrotechniczny, 2019, vol. 95, no. 9, pp. 76-82. doi: https://doi.org/10.15199/48.2019.09.15.
Halchenko V.Ya., Storchak A.V., Trembovetska R.V., Tychkov V.V. The creation of a surrogate model for restoring surface profiles of the electrophysical characteristics of cylindrical objects. Ukrainian Metrological Journal, 2020, no. 3, pp. 27-35. doi: https://doi.org/10.24027/2306-7039.3.2020.216824.
Zhyla S., Volosyuk V., Pavlikov V., Ruzhentsev N., Tserne E., Popov A., Shmatko O., Havrylenko O., Kuzmenko N., Dergachov K., Averyanova Y., Sushchenko O., Zaliskyi M., Solomentsev O., Ostroumov I., Kuznetsov B., Nikitina T. Practical imaging algorithms in ultra-wideband radar systems using active aperture synthesis and stochastic probing signals. Radioelectronic and Computer Systems, 2023, no. 1, pp. 55-76. doi: https://doi.org/10.32620/reks.2023.1.05.
Chystiakov P., Chornyi O., Zhautikov B., Sivyakova G. Remote control of electromechanical systems based on computer simulators. 2017 International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk, Ukraine, 2017, pp. 364-367. doi: https://doi.org/10.1109/mees.2017.8248934.
Zagirnyak M., Bisikalo O., Chorna O., Chornyi O. A Model of the Assessment of an Induction Motor Condition and Operation Life, Based on the Measurement of the External Magnetic Field. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), Kharkiv, 2018, pp. 316-321. doi: https://doi.org/10.1109/ieps.2018.8559564.
Maksymenko-Sheiko K.V., Sheiko T.I., Lisin D.O., Petrenko N.D. Mathematical and Computer Modeling of the Forms of Multi-Zone Fuel Elements with Plates. Journal of Mechanical Engineering, 2022, vol. 25, no. 4, pp. 32-38. doi: https://doi.org/10.15407/pmach2022.04.032.
Hontarovskyi P.P., Smetankina N.V., Ugrimov S.V., Garmash N.H., Melezhyk I.I. Computational Studies of the Thermal Stress State of Multilayer Glazing with Electric Heating. Journal of Mechanical Engineering, 2022, vol. 25, no. 1, pp. 14-21. doi: https://doi.org/10.15407/pmach2022.02.014.
Kostikov A.O., Zevin L.I., Krol H.H., Vorontsova A.L. The Optimal Correcting the Power Value of a Nuclear Power Plant Power Unit Reactor in the Event of Equipment Failures. Journal of Mechanical Engineering, 2022, vol. 25, no. 3, pp. 40-45. doi: https://doi.org/10.15407/pmach2022.03.040.
Rusanov A.V., Subotin V.H., Khoryev O.M., Bykov Y.A., Korotaiev P.O., Ahibalov Y.S. Effect of 3D Shape of Pump-Turbine Runner Blade on Flow Characteristics in Turbine Mode. Journal of Mechanical Engineering, 2022, vol. 25, no. 4, pp. 6-14. doi: https://doi.org/10.15407/pmach2022.04.006.
Ummels M. Stochastic Multiplayer Games Theory and Algorithms. Amsterdam University Press, 2010. 174 p.
Shoham Y., Leyton-Brown K. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, 2009. 504 p.
Sushchenko O., Averyanova Y., Ostroumov I., Kuzmenko N., Zaliskyi M., Solomentsev O., Kuznetsov B., Nikitina T., Havrylenko O., Popov A., Volosyuk V., Shmatko O., Ruzhentsev N., Zhyla S., Pavlikov V., Dergachov K., Tserne E. Algorithms for Design of Robust Stabilization Systems. Computational Science and Its Applications – ICCSA 2022. ICCSA 2022. Lecture Notes in Computer Science, 2022, vol. 13375, pp. 198-213. doi: https://doi.org/10.1007/978-3-031-10522-7_15.
Zhyla S., Volosyuk V., Pavlikov V., Ruzhentsev N., Tserne E., Popov A., Shmatko O., Havrylenko O., Kuzmenko N., Dergachov K., Averyanova Y., Sushchenko O., Zaliskyi M., Solomentsev O., Ostroumov I., Kuznetsov B., Nikitina T. Statistical synthesis of aerospace radars structure with optimal spatio-temporal signal processing, extended observation area and high spatial resolution. Radioelectronic and Computer Systems, 2022, no. 1, pp. 178-194. doi: https://doi.org/10.32620/reks.2022.1.14.
Xin-She Yang, Zhihua Cui, Renbin Xiao, Amir Hossein Gandomi, Mehmet Karamanoglu. Swarm Intelligence and Bio-Inspired Computation: Theory and Applications, Elsevier Inc., 2013. 450 p.
Hashim F.A., Hussain K., Houssein E.H., Mabrouk M.S., Al-Atabany W. Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Applied Intelligence, 2021, vol. 51, no. 3, pp. 1531-1551. doi: https://doi.org/10.1007/s10489-020-01893-z.
Baranov M.I., Rozov V.Y., Sokol Y.I. To the 100th anniversary of the National Academy of Sciences of Ukraine – the cradle of domestic science and technology. Electrical Engineering & Electromechanics, 2018, no. 5, pp. 3-11. doi: https://doi.org/10.20998/2074-272X.2018.5.01.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 B. I. Kuznetsov, T. B. Nikitina, I. V. Bovdui, K. V. Chunikhin, V. V. Kolomiets, B. B. Kobylianskyi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.