Computational analysis method of the electromagnetic field propagation and deformation of conductive bodies

Authors

  • D. V. Lavinsky National Technical University «Kharkiv Polytechnic Institute», Ukraine https://orcid.org/0000-0002-1380-3131
  • Yu. I. Zaitsev National Technical University «Kharkiv Polytechnic Institute», Ukraine

DOI:

https://doi.org/10.20998/2074-272X.2023.5.11

Keywords:

computational analysis, electromagnetic field, electromagnetic forming, deformation, finite element method

Abstract

Introduction. The electromagnetic field is an integral attribute of the operation of many technical and technological systems. The action of an electromagnetic field leads to deformation, a change in temperature, a change in the physical properties of the materials. Problem. High-intensity electromagnetic fields can cause such a strong deformation of conductive bodies that it can lead to irreversible shape change or destruction. This fact is used in a class of technological operations: electromagnetic forming. Here, both the workpiece and the equipment are subjected to intense force action. As a result, equipment elements may become inoperable. Goal. Creation of a computational analysis method of the electromagnetic field propagation in systems of conductive bodies and subsequent analysis of deformation. Application of this method to the study of processes in electromagnetic forming systems in order to determine rational operational parameters that provide the result of a technological operation. Methodology. A variational formulation of the problems of an electromagnetic field propagation and deformation of conductive bodies systems is used. Numerical modeling and analysis are performed using the finite element method. Results. In a general form, a system of resolving equations for the values of the vector magnetic potential and displacements is obtained. The influence of the electromagnetic field is taken into account by introducing electromagnetic forces. The results of calculations for a technological system designed for electromagnetic forming of curved thin-walled workpieces are presented. Originality. For the first time, a method of computational analysis is presented, which involves modeling within the framework of one design scheme both the process of electromagnetic field propagation and the process of deformation. Practical significance. The proposed method of computational analysis can be used for various technological systems of electromagnetic forming in order to determine the rational parameters that ensure both the operability of the equipment and the purpose of the technological operation - the necessary shaping of the workpiece.

Author Biographies

D. V. Lavinsky, National Technical University «Kharkiv Polytechnic Institute»

Doctor of Technical Science, Associate Professor

Yu. I. Zaitsev, National Technical University «Kharkiv Polytechnic Institute»

Candidate of Technical Science, Professor

References

Maugin C.A. Electromagnetic internal variables in electromagnetic continua. Archives of Mechanics, 1981, vol. 33, no. 1, pp. 927-936.

Nowacki W. Efekty Elektromagnetyczne w Stałych Ciałach Odkształcalnych. Państwowe Wydawnictwo Naukowe, Warsaw, 1983. (Pol).

Eringen A.C., Maugin G.A. Electrodynamics of continua I: foundations and solid media. Springer Science & Business Media, 2012.

Maugin G.A. Continuum mechanics of electromagnetic solids. Elsevier, 2013.

Knopoff L. The interaction between elastic wave motions and a magnetic field in electrical conductors. Journal of Geophysical Research, 1955, vol. 60, no. 4, pp. 441-456. doi: https://doi.org/10.1029/JZ060i004p00441.

Kleiner M., Beerwald C., Homberg W. Analysis of process parameters and forming mechanisms within the electromagnetic forming process. CIRP annals, 2005, vol. 54, no. 1, pp. 225-228. doi: https://doi.org/10.1016/S0007-8506(07)60089-4.

Mamalis A.G., Manolakos D.E., Kladas A.G., Koumoutsos A.K. Electromagnetic Forming Tools and Processing Conditions: Numerical Simulation. Materials and Manufacturing Processes, 2006, vol. 21, no. 4, pp. 411-423. doi: https://doi.org/10.1080/10426910500411785.

Psyk V., Risch D., Kinsey B.L., Tekkayaa A.E., Kleiner M. Electromagnetic forming – a review. Journal of Materials Processing Technology, 2011, vol. 211, no. 5, pp. 787-829. doi: https://doi.org/10.1016/j.jmatprotec.2010.12.012.

Gayakwad D., Dargar M.K., Sharma P.K., Purohit R., Rana R.S. A Review on Electromagnetic Forming Process. Procedia Materials Science, 2014, vol. 6, pp. 520-527. doi: https://doi.org/10.1016/j.mspro.2014.07.066.

Batygin Yu.V., Chaplygin E.A., Shinderuk S.A., Strelnikova V.A. The main inventions for technologies of the magnetic pulsed attraction of the sheet metals. A brief review. Electrical Engineering & Electromechanics, 2018, no. 3, pp. 43-52. doi: https://doi.org/10.20998/2074-272X.2018.3.06.

Batygin Yu., Barbashova M., Sabokar O. Electromagnetic Metal Forming for Advanced Processing Technologies. Cham, Springer International Publ. AG., 2018. 93 p. doi: https://doi.org/10.1007/978-3-319-74570-1.

Batygin Y.V., Chaplygin E.A. Vortical currents in flat metallic sheet. Electrical Engineering & Electromechanics, 2006, no. 5, pp. 54-59. (Rus).

Unger J., Stiemer M., Schwarze M., Svendsen B., Blum H., Reese S. Strategies for 3D simulation of electromagnetic forming processes. Journal of Materials Processing Technology, 2008, vol. 199, no. 1-3, pp. 341-362. doi: https://doi.org/10.1016/j.jmatprotec.2007.08.028.

Stiemer M., Unger J., Svendsen B., Blum H. An arbitrary Lagrangian Eulerian approach to the three-dimensional simulation of electromagnetic forming. Computer Methods in Applied Mechanics and Engineering, 2009, vol. 198, no. 17-20, pp. 1535-1547. doi: https://doi.org/10.1016/j.cma.2009.01.014.

Altenbach H., Konkin V., Lavinsky D., Morachkovsky O., Naumenko K. Verformungsanalyse elektrisch leitender metallischer Bauteile bei Magnetimpulsbearbeitung. Forschung im Ingenieurwesen, 2018, vol. 82, no. 4, pp. 371-377. (Ger). doi: https://doi.org/10.1007/s10010-018-0285-x.

Lavinskii D.V., Morachkovskii O. K. Elastoplastic Deformation of Bodies Interacting Through Contact Under the Action of Pulsed Electromagnetic Field. Strength of Materials, 2016, vol. 48, no. 6, pp. 760-767. doi: https://doi.org/10.1007/s11223-017-9822-3.

Batygin Y.V., Golovashchenko S.F., Gnatov A.V., Smirnov D.O. Magnetic field and pressures excited by four pairwise coplanar solenoids in the cavity of a rectangular tube. Electrical Engineering & Electromechanics, 2010, no. 2, pp. 46-49. (Rus).

Batygin Y.V., Serikov G.S. Magnetic field and pressures excited by a single-turn inductor in a corner bend of a sheet worpiece. Electrical Engineering & Electromechanics, 2006, no. 6, pp. 66-70. (Rus).

Downloads

Published

2023-08-21

How to Cite

Lavinsky, D. V., & Zaitsev, Y. I. (2023). Computational analysis method of the electromagnetic field propagation and deformation of conductive bodies. Electrical Engineering & Electromechanics, (5), 77–82. https://doi.org/10.20998/2074-272X.2023.5.11

Issue

Section

High Electric and Magnetic Field Engineering, Engineering Electrophysics