Mitigation of harmonics for five level multilevel inverter with fuzzy logic controller
DOI:
https://doi.org/10.20998/2074-272X.2023.4.08Keywords:
cascade H-bridge multilevel inverters, fuzzy logic controller, selective pulse width modulation technique, total harmonic distortionAbstract
Introduction. The advantages of a high-power quality waveform and a high voltage capability of multilevel inverters have made them increasingly popular in recent years. These inverters reduce harmonic distortion and improve the voltage output. Realistically speaking, as the number of voltage levels increases, so does the quality of the multilevel output-voltage waveform. When it comes to industrial power converters, these inverters are by far the most critical. Novelty. Multilevel cascade inverters can be used to convert multiple direct current sources into one direct current. These inverters have been getting a lot of attention recently for high-power applications. A cascade H-bridge multilevel inverter controller is proposed in this paper. A change in the pulse width of selective pulse width modulation modulates the output of the multilevel cascade inverter. Purpose. The total harmonic distortion can be reduced by using filters on controllers like PI and fuzzy logic controllers. Methods. The proposed topology is implemented with MATLAB/Simulink, using gating pulses and pulse width modulation methodology and fuzzy logic controllers. Moreover, the proposed model also has been validated and compared to the hardware system. Results. Total harmonic distortion, number of power switches, output voltage and number of DC sources are analyzed with conventional topologies. Practical value. The proposed topology has been very supportive for implementing photovoltaic based multilevel inverter, which is connected to large demand in grid and industry.
References
Khoun-Jahan H. Switched Capacitor Based Cascaded Half-Bridge Multilevel Inverter With Voltage Boosting Feature. CPSS Transactions on Power Electronics and Applications, 2021, vol. 6, no. 1, pp. 63-73. doi: https://doi.org/10.24295/CPSSTPEA.2021.00006.
Grandi G., Loncarski J., Dordevic O. Analysis and Comparison of Peak-to-Peak Current Ripple in Two-Level and Multilevel PWM Inverters. IEEE Transactions on Industrial Electronics, 2015, vol. 62, no. 5, pp. 2721-2730. doi: https://doi.org/10.1109/TIE.2014.2363624.
Lingom P.M., Song-Manguelle J., Mon-Nzongo D.L., Flesch R.C.C., Jin T. Analysis and Control of PV Cascaded H-Bridge Multilevel Inverter With Failed Cells and Changing Meteorological Conditions. IEEE Transactions on Power Electronics, 2021, vol. 36, no. 2, pp. 1777-1789. doi: https://doi.org/10.1109/TPEL.2020.3009107.
Ezhilvannan P., Krishnan S. An Efficient Asymmetric Direct Current (DC) Source Configured Switched Capacitor Multi-level Inverter. Journal Européen Des Systèmes Automatisés, 2020, vol. 53, no. 6, pp. 853-859. doi: https://doi.org/10.18280/jesa.530611.
Siddique M.D., Mekhilef S., Rawa M., Wahyudie A., Chokaev B., Salamov I. Extended Multilevel Inverter Topology With Reduced Switch Count and Voltage Stress. IEEE Access, 2020, vol. 8, pp. 201835-201846. doi: https://doi.org/10.1109/ACCESS.2020.3026616.
Saeedian M., Adabi M.E., Hosseini S.M., Adabi J., Pouresmaeil E. A Novel Step-Up Single Source Multilevel Inverter: Topology, Operating Principle, and Modulation. IEEE Transactions on Power Electronics, 2019, vol. 34, no. 4, pp. 3269-3282. doi: https://doi.org/10.1109/TPEL.2018.2848359.
Sandeep N., Yaragatti U.R. Design and Implementation of a Sensorless Multilevel Inverter With Reduced Part Count. IEEE Transactions on Power Electronics, 2017, vol. 32, no. 9, pp. 6677-6683. doi: https://doi.org/10.1109/TPEL.2017.2681739.
Suresh K., Parimalasundar E. A Modified Multi Level Inverter With Inverted SPWM Control. IEEE Canadian Journal of Electrical and Computer Engineering, 2022, vol. 45, no. 2, pp. 99-104. doi: https://doi.org/10.1109/ICJECE.2022.3150367.
Jahan H.K., Panahandeh F., Abapour M., Tohidi S. Reconfigurable Multilevel Inverter With Fault-Tolerant Ability. IEEE Transactions on Power Electronics, 2018, vol. 33, no. 9, pp. 7880-7893. doi: https://doi.org/10.1109/TPEL.2017.2773611.
Haji-Esmaeili M.M., Naseri M., Khoun-Jahan H., Abapour M. Fault-Tolerant and Reliable Structure for a Cascaded Quasi-Z-Source DC–DC Converter. IEEE Transactions on Power Electronics, 2017, vol. 32, no. 8, pp. 6455-6467. doi: https://doi.org/10.1109/TPEL.2016.2621411.
Kiran Kumar G., Parimalasundar E., Elangovan D., Sanjeevikumar P., Lannuzzo F., Holm-Nielsen J.B. Fault Investigation in Cascaded H-Bridge Multilevel Inverter through Fast Fourier Transform and Artificial Neural Network Approach. Energies, 2020, vol. 13, no. 6, art. no. 1299. doi: https://doi.org/10.3390/en13061299.
Belbachir N., Zellagui M., Settoul S., El-Bayeh C.Z., Bekkouche B. Simultaneous optimal integration of photovoltaic distributed generation and battery energy storage system in active distribution network using chaotic grey wolf optimization. Electrical Engineering & Electromechanics, 2021, no. 3, pp. 52-61. doi: https://doi.org/10.20998/2074-272X.2021.3.09.
Yang S., Sun X., Ma M., Zhang X., Chang L. Fault Detection and Identification Scheme for Dual-Inverter Fed OEWIM Drive. IEEE Transactions on Industrial Electronics, 2020, vol. 67, no. 7, pp. 6112-6123. doi: https://doi.org/10.1109/TIE.2019.2922924.
Anand A., Akhil Vinayak B., Raj N., Jagadanand G., George S. A Generalized Switch Fault Diagnosis for Cascaded H-Bridge Multilevel Inverters Using Mean Voltage Prediction. IEEE Transactions on Industry Applications, 2020, vol. 56, no. 2, pp. 1563-1574. doi: https://doi.org/10.1109/TIA.2019.2959540.
Ouni S., Narimani M., Zargari N.R., Cheng Z. A New Fault-Tolerant Control Method for Cascaded H-Bridge Multilevel Inverter to Increase Maximum Output Voltage. 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 2922-2927. doi: https://doi.org/10.1109/ECCE.2019.8912282.
Parimalasundar E., Kumar N.M.G., Geetha P., Suresh K. Performance investigation of modular multilevel inverter topologies for photovoltaic applications with minimal switches. Electrical Engineering & Electromechanics, 2022, no. 6, 28-34. doi: https://doi.org/10.20998/2074-272X.2022.6.05.
Parimalasundar E., Senthil Kumar R., Chandrika V.S., Suresh K. Fault diagnosis in a five-level multilevel inverter using an artificial neural network approach. Electrical Engineering & Electromechanics, 2023, no. 1, pp. 31-39. doi: https://doi.org/10.20998/2074-272X.2023.1.05.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 M. S. Sujatha, S. Sreelakshmi, E. Parimalasundar, K. Suresh
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.