Effective parameters of dielectric absorption of polymeric insulation with semiconductor coatings of power high voltage cables





semiconductor coatings, polymer insulation, high-voltage power cable, nonlinear substitution circuit, complex dielectric permittivity, active conductivity, effective electric capacitance, effective tangent of dielectric losses angle


Introduction. The presence of semiconductor shields leads to additional dielectric losses compared to polymer insulation without shields. Losses in cables in the presence of semiconductor coatings depend on the dielectric permittivity and resistivity of the composite polymeric material, which are frequency-dependent characteristics. Purpose. To determine in a wide range of frequencies, taking into account the variance of electrophysical characteristics and thickness of semiconductor shields effective electric capacitance and tangent of dielectric losses angle of high-voltage power cables with polymer insulation. Methodology. Serial-parallel nonlinear circuit replacement of semiconductor coatings and linear polymer insulation to determine in a wide range of frequency the effective parameters of the dielectric absorption of a three-layer composite system of high-voltage power cables of single core. Practical value. The obtained relations are the basis for the development of practical recommendations for substantiating the thickness and electrophysical parameters of semiconductor shields to reduce the impact on the effective tangent of the dielectric losses angle of a three-layer composite system of high-voltage power cables.

Author Biographies

G. V. Bezprozvannych, National Technical University «Kharkiv Polytechnic Institute»

Doctor of Technical Science, Professor

M. V. Grynyshyna, TOV «Interkabel Kiev»

Postgraduate Student, Tech. Director


SOU-N EE 20.302: 2007 Standards for testing electrical equipment (new version 2020). – K., 262 p. (Ukr). Available at: http://www.elec.ru/articles/innovacionnyc-proryv-na-rynke-silovyh-transformatorov (Accessed 28 March 2021).

Wire and Cable Market (Type - Wire, and Cable; Voltage Type - Low Voltage, Medium Voltage, and High and Extra High Voltage; Applications - Power Transmission and Distribution, Transport, Data Transmission, Infrastructure): Global Industry Analysis, Trends, Size, Share and Forecasts to 2024. Infinium Global Research, 2020. Available at: https://www.infiniumglobalresearch.com/ict-semiconductor/global-wire-and-cable-market (Accessed 28 March 2021).

Huang X., Zhang J., Jiang P. Thermoplastic insulation materials for power cables: History and progress. Gaodianya Jishu/High Voltage Engineering, 2018, vol. 44, no. 5, pp. 1377-1398. doi: https://doi.org/10.13336/j.1003-6520.hve.20180430001.

Cataliotti A., Daidone A., Tine G. Power Line Communication in Medium Voltage Systems: Characterization of MV Cables. IEEE Transactions on Power Delivery, 2008, vol. 23, no. 4, pp. 1896-1902. doi: https://doi.org/10.1109/TPWRD.2008.919048.

Zhao H., Zhang W., Wang Y. Characteristic Impedance Analysis of Medium-Voltage Underground Cables with Grounded Shields and Armors for Power Line Communication. Electronics, 2019, vol. 8, no. 5, p. 571. doi: https://doi.org/10.3390/electronics8050571.

Linde E., Verardi L., Fabiani D., Gedde U.W. Dielectric spectroscopy as a condition monitoring technique for cable insulation based on crosslinked polyethylene. Polymer Testing, 2015, vol. 44, pp. 135-142. doi: https://doi.org/10.1016/j.polymertesting.2015.04.004.

Bezprozvannych G.V., Kostiukov I.A. A calculation model for determination of impedance of power high voltage single-core cables with polymer insulation. Electrical Engineering & Electromechanics, 2021, no. 3, pp. 47-51. doi: https://doi.org/10.20998/2074-272X.2021.3.08.

Araneo R., Celozzi S., Faria J.A.B. Frequency-domain analysis of the characteristic impedance matrix of high-voltage transmission lines. 2017 International Symposium on Electromagnetic Compatibility – EMC EUROPE, 2017, pp. 1-6. doi: https://doi.org/10.1109/EMCEurope.2017.8094662.

Papazyan R. Concepts for market-based MV cable operations and maintenance using insulation parameters measurements. 2020 12th Electrical Engineering Faculty Conference (BulEF), 2020, pp. 1-5. doi: https://doi.org/10.1109/BulEF51036.2020.9326055.

Heider M.Z., Rahman M.M., Al-Arainy A.A. Study of frequency variant tan delta diagnosis for MV cables insulation status assessment. 2019 5th International Conference on Advances in Electrical Engineering (ICAEE), 2019, pp. 260-264. doi: https://doi.org/10.1109/ICAEE48663.2019.8975616.

Sun B., Makram E., Xu X. Impacts of Water-Tree Fault on Ferroresonance in Underground Cables. Journal of Power and Energy Engineering, 2017, vol. 05, no. 12, pp. 75-86. doi: https://doi.org/10.4236/jpee.2017.512010.

Burkes K.W., Makram E.B., Hadidi R. Water Tree Detection in Underground Cables Using Time Domain Reflectometry. IEEE Power and Energy Technology Systems Journal, 2015, vol. 2, no. 2, pp. 53-62. doi: https://doi.org/10.1109/JPETS.2015.2420791.

Kucheriava I.M. Power cable defects and their influence on electric field distribution in polyethylene insulation. Technical Electrodynamics, 2017, no. 2, pp. 19-24. doi: http://doi.org/10.15407/techned2017.02.019.

Wei Y., Liu M., Han W., Li G., Hao C., Lei Q. Charge Injection Characteristics of Semi-Conductive Composites with Carbon Black-Polymer for HVDC Cable. Polymers, 2019, vol. 11, no. 7, p. 1134. doi: https://doi.org/10.3390/polym11071134.

Bezprozvannych G.V., Kyessayev A.G. The technological and exploitative factors of local increase of electric field strength in the power cable of coaxial design. Electrical Engineering & Electromechanics, 2016, no. 6, pp. 54-59. doi: https://doi.org/10.20998/2074-272X.2016.6.09.

Liu T., Fothergill J., Dodd S., Nilsson U. Influence of semicon shields on the dielectric loss of XLPE cables. 2009 IEEE Conference on Electrical Insulation and Dielectric Phenomena, 2009, pp. 246-249. doi: https://doi.org/10.1109/CEIDP.2009.5377792.

Chunchuan Xu, Boggs S.A. High frequency properties of shielded power cable. Part 2: sources of error in measuring shield dielectric properties. IEEE Electrical Insulation Magazine, 2006, vol. 22, no. 1, pp. 7-13. doi: https://doi.org/10.1109/MEI.2006.1618966.

Fröhlich H. Theory of dielectrics. Dielectric constant and dielectric loss. Oxford, Clarendon Press, 1949. 180 р.

Murphy E.J., Lowry H.H. The Complex Nature of Dielectric Absorption and Dielectric Loss. The Journal of Physical Chemistry, 1930, vol. 34, no. 3, pp. 598-620. doi: https://doi.org/10.1021/j150309a014.

Von Hippel A.R. Dielectrics and waves. New York, London, John Wiley and Sons, Chapman and Hall, 1959. 284 p.

Zolotarev V.M., Zolotarev V.V., Buzko S.V., Antonets T.Yu., Naumenko A.A. Effect of shield conductivity on dielectric losses in cables. Bulletin NTU «KhPI», 2014, no. 21, pp. 50-54. (Rus). Available at: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/9217/1/vestnik_HPI_2014_21_Zolotaryov_Vliyaniye.pdf (Accessed 15 April 2021).

Bezprozvannych A.V., Kessaev A.G., Shcherba M.A. Frequency dependence of dielectric loss tangent on the degree of humidification of polyethylene cable insulation. Technical Electrodynamics, 2016, no. 3, pp. 18-24. doi: https://doi.org/10.15407/techned2016.03.018.

Rothon R. Fillers for Polymer Applications. Springer International Publishing, 2017. 317 p. doi: https://doi.org/10.1007/978-3-319-28117-9.



How to Cite

Bezprozvannych, G. V., & Grynyshyna, M. V. (2022). Effective parameters of dielectric absorption of polymeric insulation with semiconductor coatings of power high voltage cables. Electrical Engineering & Electromechanics, (3), 39–45. https://doi.org/10.20998/2074-272X.2022.3.06



Electrical Insulation and Cable Engineering