A novel scheme for control by active and reactive power utilized in gearless variable speed wind turbine system with PMSG connected to the grid





wind turbine, wind farm, gearless wind turbine, variable-speed wind turbine, IGBT power converter, multi-pole permanent magnet synchronous generator, full-scale power converter


Introduction. As a result of increasing fossil fuel price and state-of-the-art technology, more and more residential and commercial consumers of electricity have been installing wind turbines. The motivation being to cut energy bills and carbon dioxide emissions. Purpose. The main goal of this work is developing a control scheme for a variable speed wind turbine generator in order to produce utmost power from varying wind types, and variable wind speed. Novelty. This research paper presents an IGBT power converter control scheme for active power in relation to wind speed and reactive power by adjusting Q-reference (Qref) value in a gearless variable speed wind turbine with permanent magnet synchronous generator. Methods. An effective modelling and control of the wind turbine with the suggested power converter is executed by utilizing MATLAB/Simulink software. The control scheme consists of both the wind turbine control and the power converter control. Simulation results are utilized in the analysis and deliberation of the ability of the control scheme, which reveals that the wind turbine generator has the capability to actively sustain an electric power grid network, owing to its ability to independently control active and reactive power according to applied reference values at variable wind speed. Practical value. This research can be utilized for assessing the control methodology, the dynamic capabilities and influence of a gearless variable-speed wind energy conversion system on electric power grids. A case study has been presented with a (3×10 MW = 30 MW) wind farm scheme.

Author Biographies

S. Ghanem, Czech Technical University

PhD Student, Department of Electrical Power Engineering, Faculty of Electrical Engineering

G. Fandi, Czech Technical University

PhD, Assistant Professor, Department of Electrical Power Engineering, Faculty of Electrical Engineering

J. Kyncl, Czech Technical University

PhD, Associate Professor, Department of Electrical Power Engineering, Faculty of Electrical Engineering

Z. Müller, Czech Technical University

PhD, Associate Professor, Department of Electrical Power Engineering, Faculty of Electrical Engineering


Döşoğlu M.K., Basa Arsoy A. Enhancement of a reduced order doubly fed induction generator model for wind farm transient stability analyses. Turkish Journal of Electrical Engineering & Computer Sciences, 2016, vol. 24, pp. 2124-2134. doi: https://doi.org/10.3906/elk-1402-195.

Michalke G., Hansen A.D., Hartkopf T. Control strategy of a variable speed wind turbine with multipole permanent magnet synchronous generator. European Wind Energy Conference and Exhibition 2007, EWEC 2007, vol. 3, pp. 1371-1378.

Merabet A., Keeble R., Rajasekaran V., Beguenane R., Ibrahim H., Thongam J. Power Management System for Load Banks Supplied by Pitch Controlled Wind Turbine System. Applied Sciences, 2012, vol. 2, no. 4, pp. 801-815. doi: https://doi.org/10.3390/app2040801.

Shaaban M., Usman M.D. Quantitative risk associated with intermittent wind generation. Turkish Journal of Electrical Engineering & Computer Sciences, 2016, vol. 24, pp. 3144-3157. doi: https://doi.org/10.3906/elk-1405-102.

Izgi E., Kaymak M.K., Öztopal A., Durna B., Şahin A.D. Variations and relations of meteorological parameters between upwind and downwind small-scale wind turbine rotor area. Turkish Journal of Electrical Engineering & Computer Sciences, 2016, vol. 24, pp. 1091-1098. doi: https://doi.org/10.3906/elk-1312-147.

Stiel A., Skyllas-Kazacos M. Feasibility Study of Energy Storage Systems in Wind/Diesel Applications Using the HOMER Model. Applied Sciences, 2012, vol. 2, no. 4, pp. 726-737. doi: https://doi.org/10.3390/app2040726.

Ghosh S., Saha P.P.K., Panda P.G.K. Wind Energy Conversion System Connected With Grid Using Permanent Magnet Synchronous Generator (PMSG). International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2015, vol. 04, no. 01, pp. 120-127. doi: https://doi.org/10.15662/ijareeie.2015.0401011.

Karki R., Dhungana D., Billinton R. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations. Applied Sciences, 2013, vol. 3, no. 1, pp. 107-121. doi: https://doi.org/10.3390/app3010107.

Ahmed M.A., Pan J.-K., Song M., Kim Y.-C. Communication Network Architectures Based on Ethernet Passive Optical Network for Offshore Wind Power Farms. Applied Sciences, 2016, vol. 6, no. 3, p. 81. doi: https://doi.org/10.3390/app6030081.

Fandi G., Igbinovia F.O., Müller Z., Švec J., Tlusty J. Using renewable MV wind energy resource to supply reactive power in MV distribution network. 2015 16th International Scientific Conference on Electric Power Engineering (EPE), 2015, pp. 169-173. doi: https://doi.org/10.1109/EPE.2015.7161146.

Fandi G., Igbinovia F.O., Švec J., Müller Z., Tlustý J. Advantageous positioning of wind turbine generating system in MV distribution network. 2016 17th International Scientific Conference on Electric Power Engineering (EPE), 2016, pp. 1-6. doi: https://doi.org/10.1109/EPE.2016.7521807.

Babouri R., Aouchenni O., Aozellag D., Ghedamsi K. Wind farm based on DFIG entirely interfaced with 14-node distribution network: power control and voltage regulation. Turkish Journal of Electrical Engineering & Computer Sciences, 2016, vol. 24, pp. 2838-2852. doi: https://doi.org/10.3906/elk-1404-292.

Çolak I., Bayındır R., Sefa I., Demirtas M. Design and hybrid energy power system using solar and wind energy. Proceedings of the 2nd International Conference on Technical and Physical Problems in Power Engineering, 2004, pp. 776-778.

Kabalci E., Irmak E., Çolak I. Design of an AC-DC-AC converter for wind turbines. International Journal of Energy Research, 2011, vol. 35, no. 2, pp. 169-175. doi: https://doi.org/10.1002/er.1770.

Bana Shari M.B., Mohamadrez Y., Hosseinpou M., Torabzade S. Maximum Power Control of Grid Connected Variable Speed Wind System through Back to Back Converters. Journal of Applied Sciences, 2008, vol. 8, no. 23, pp. 4416-4421. doi: https://doi.org/10.3923/jas.2008.4416.4421.

Yin M., Li G., Zhou M., Zhao C. Modeling of the Wind Turbine with a Permanent Magnet Synchronous Generator for Integration. 2007 IEEE Power Engineering Society General Meeting, 2007, pp. 1-6. doi: https://doi.org/10.1109/PES.2007.385982.

Hansen A.D. Generators and Power Electronics for Wind Turbines. In Wind Power in Power Systems, 2005, pp. 53-78. John Wiley & Sons, Ltd. doi: https://doi.org/10.1002/0470012684.ch4.

Oğuz Y., Güney I., Çalık H. Power Quality Control and Design of Power Converter for Variable-Speed Wind Energy Conversion System with Permanent-Magnet Synchronous Generator. The Scientific World Journal, 2013, pp. 1-14. doi: https://doi.org/10.1155/2013/783010.

Kilk A. Design and Experimental Verification of a Multipole Directly Driven Interior PM Synchronous Generator for Wind Power Applications. The 4th International Conference «Electric power quality and supply reliability», August 29-31, 2004, Pedase, Estonia: Proceedings. Tallinn: Tallinn University of Technology, p. 87-89.

Westlake A.J.G., Bumby J.R., Spooner, E. Damping the power-angle oscillations of a permanent-magnet synchronous generator with particular reference to wind turbine applications. IEE Proceedings - Electric Power Applications, 1996, vol. 143, no. 3, p. 269. doi: https://doi.org/10.1049/ip-epa:19960285.

Polinder H., de Haan S.W.H., Dubois M.R., (Han) Slootweg J.G. Basic Operation Principles and Electrical Conversion Systems of Wind Turbines. EPE Journal, 2005, vol. 15, no. 4, pp. 43-50. doi: https://doi.org/10.1080/09398368.2005.11463604.

Grauers A. Efficiency of three wind energy generator systems. IEEE Transactions on Energy Conversion, 1996, vol. 11, no. 3, pp. 650-657. doi: https://doi.org/10.1109/60.537038.

Jöckel S. Calculations of different generator systems for wind turbines with particular reference to low-speed permanent-magnet machines. PhD thesis, Technical University Darmstadt, Germany, 2002.

Chan T., Lai L.L. Permanent-Magnet Machines for Distributed Power Generation: A Review. 2007 IEEE Power Engineering Society General Meeting, 2007, pp. 1-6. doi: https://doi.org/10.1109/PES.2007.385575.

Haque M.E., Muttaqi K.M., Negnevitsky M. Control of a stand alone variable speed wind turbine with a permanent magnet synchronous generator. 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 1-9. doi: https://doi.org/10.1109/PES.2008.4596245.

Hansen A.D., Michalke G. Multi-pole permanent magnet synchronous generator wind turbines’ grid support capability in uninterrupted operation during grid faults. IET Renewable Power Generation, 2009, vol. 3, no. 3, p. 333-348. doi: https://doi.org/10.1049/iet-rpg.2008.0055.

Wang P., Wang H., Cai X., Han Z. Passivity-based robust controller design for a variable speed wind energy conversion system. Turkish Journal of Electrical Engineering & Computer Sciences, 2016, vol. 24, pp. 558-570. doi: https://doi.org/10.3906/elk-1309-206.

Jony K. Beitrag zur Modellbildung dezentraler Elektroenergieversor. 1999 Germany, 50-125.

Heier S. Grid Integration of Wind Energy Conversion System. Wiley, 2006. 446 p.

Brosh P.F. Moderne Stromrichterantriebe. Vogel- Buchverlage, 2008. 300 p.

Singh B., Al-Haddad K., Chandra A. Active power filter with sliding mode control. IEE Proceedings - Generation, Transmission and Distribution, 1997, vol. 144, no. 6, p. 564. doi: https://doi.org/10.1049/ip-gtd:19971431.

Fandi G., Švec J., Müller Z. The converter choice and its control circuit design for synchronous generators. 14th International Scientific Conference on Electric Power Engineering, 2013, Ostrava, Czech Republic, pp. 697-701.

Kasem Alaboudy A.H., Daoud A.A., Desouky S.S., Salem A.A. Converter controls and flicker study of PMSG-based grid connected wind turbines. Ain Shams Engineering Journal, 2013, vol. 4, no. 1, pp. 75-91. doi: https://doi.org/10.1016/j.asej.2012.06.002.

Muyeen S.M., Tamura J., Murata T. Introduction. In Stability Augmentation of a Grid Connected Wind Farm. Springer-Verlag, London, UK, 2009, pp. 13-21.

Rosyadi M., Muyeen S.M., Takahashi R., Tamura J. A Design Fuzzy Logic Controller for a Permanent Magnet Wind Generator to Enhance the Dynamic Stability of Wind Farms. Applied Sciences, 2012, vol. 2, no. 4, pp. 780-800. doi: https://doi.org/10.3390/app2040780.

Rafi S.H., Ferdous R.A., Sheikh M.R.I. Modeling and Control Strategy for Variable Speed Wind Turbine Using Permanent Magnet Synchronous Generator. Rajshahi University Journal of Science and Engineering, 2015, vol. 43, pp. 89-100. doi: https://doi.org/10.3329/rujse.v43i0.26155.

Vijayalakshmi S., Saikumar S., Saravanan S., Sandip R.V., Sridhar V. Modeling and control of a wind turbine using permanent magnet synchronous generator. International Journal of Engineering Science and Technology, 2011, vol. 3, no. 3, pp. 2377-2384. Available at: https://www.researchgate.net/publication/50984917_Modelling_and_controlof_a_Wind_Turbine_using_Permanent_Magnet_Synchronous_Generator (Accessed 20 August 2021).

Jöckel S. High energy production plus built-in reliability – the new Vensys 70/77 gearless wind turbines in the 1.5 MW class. European Wind Energy Conference EWEC 2006, 27 February – 2 March 2006, Athens, Greece. Paper no. 0583.

Binder A., Schneider T. Permanent magnet synchronous generators for regenerative energy conversion – a survey. European Conference on Power Electronics and Applications (EPE) 2005, 11-14 September 2005, Dresden, Germany, p. 10.

Hussein M., Senjyu T., Orabi M., Wahab M., Hamada M. Control of a Stand-Alone Variable Speed Wind Energy Supply System. Applied Sciences, 2013, vol. 3, no. 2, pp. 437-456. doi: https://doi.org/10.3390/app3020437.

Zhou D., Blaabjerg F., Franke T., Tønnes M., Lau M. Comparison of Wind Power Converter Reliability With Low-Speed and Medium-Speed Permanent-Magnet Synchronous Generators. IEEE Transactions on Industrial Electronics, 2015, vol. 62, no. 10, pp. 6575-6584. doi: https://doi.org/10.1109/TIE.2015.2447502.

Chinchilla M., Arnaltes S., Burgos J.C. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid. IEEE Transactions on Energy Conversion, 2006, vol. 21, no. 1, pp. 130-135. doi: https://doi.org/10.1109/TEC.2005.853735.

Wu R., Blaabjerg F., Wang H., Liserre M., Iannuzzo F. Catastrophic failure and fault-tolerant design of IGBT power electronic converters - an overview. IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, 2013, pp. 507-513. doi: https://doi.org/10.1109/IECON.2013.6699187.

Yang S., Bryant A., Mawby P., Xiang D., Ran L., Tavner P. An Industry-Based Survey of Reliability in Power Electronic Converters. IEEE Transactions on Industry Applications, 2011, vol. 47, no. 3, pp. 1441-1451. doi: https://doi.org/10.1109/TIA.2011.2124436.

Hong S. Studies on integrated variable-speed constant-frequency wind turbine mode application. PhD Dissertation, Electric Power Research Institute, Beijing, China, 2003.

Teodorescu R., Liserre M., Rodriguez P. Grid converters for photovoltaic and wind power systems. Wiley-IEEE Press, 2011. 416 p.

Rao S.V., Lokya M., Krishna C.H. A Novel Three-Phase Three-Leg AC/AC Converter Using Nine IGBTS. International Journal of Modern Engineering Research, 2012, vol. 2, no. 6, pp. 4323-4334.

Fernandez L.M., Garcia C.A., Jurado F. Operating capability as a PQ/PV node of a direct-drive wind turbine based on a permanent magnet synchronous generator. Renewable Energy, 2010, vol. 35, no. 6, pp. 1308-1318. doi: https://doi.org/10.1016/j.renene.2009.11.046.

Singh A.K., Krisham R., Sood Y. Modeling and control of grid connected variable speed PMSG based wind energy system. Conference on Advances in Communication and Control Systems 2013 (CAC2S 2013), Mumbai, India, pp. 134-139. Available at: https://www.researchgate.net/publication/271241810_Modeling_and_Control_of_Grid_Connected_Variable_Speed_PMSG_Based_Wind_Energy_System (Accessed 20 August 2021).

Akhmatov V. Analysis of dynamic behavior of electric power systems with large amount of wind power. PhD Thesis, Ørsted, Denmark, Denmark Technical University, 2003.

Hansen A.D., Jauch C., Sorensen P., Iov F., Blaabjerg F. Dynamic wind turbine models in power system simulation tool DIgSILENT. Risø National Laboratory, Roskilde, Denmark, Technical University of Denmark, 2003. Available at: https://www.osti.gov/etdeweb/servlets/purl/20437623 (Accessed 20 August 2021).

Hansen A.D., Michalke G. Modelling and control of variable-speed multi-pole permanent magnet synchronous generator wind turbine. Wind Energy, 2008, vol. 11, no. 5, pp. 537-554. doi: https://doi.org/10.1002/we.278.

Blaabjerg F., Liserre M., Ma K. Power Electronics Converters for Wind Turbine Systems. IEEE Transactions on Industry Applications, 2012, vol. 48, no. 2, pp. 708-719. doi: https://doi.org/10.1109/TIA.2011.2181290.

Rebollo J., Cortés I., Perpiñà X., Millán J. A Review of Si MOS-gated Power Switches and PiN Rectifiers. Automatika, 2012, vol. 53, no. 2, pp. 117-127. doi: https://doi.org/10.7305/automatika.53-2.178.

Bose B.K. Evaluation of modern power semiconductor devices and future trends of converters. IEEE Transactions on Industry Applications, 1992, vol. 28, no. 2, pp. 403-413. doi: https://doi.org/10.1109/28.126749.

Mohammed S.A., Abdel-Moamen M.A., Hasanin B. A Review of the State-Of-The-Art of Power Electronics For Power System Applications. Journal of Electronics and Communication Engineering Research, 2013, vol. 1, no. 1, pp. 43-52. Available at: https://www.questjournals.org/jecer/papers/vol1-issue1/F114352.pdf (Accessed 20 August 2021).

Insulated Gate Bipolar Transistor, Electronics Tutorials. Available at: http://www.electronics-tutorials.ws/power/insulated-gate-bipolar-transistor.html (Accessed 20 August 2021).

Rahimo M., Kopta A., Linder S. Novel Enhanced-Planar IGBT Technology Rated up to 6.5 kV for Lower Losses and Higher SOA Capability. 2006 IEEE International Symposium on Power Semiconductor Devices and IC's, 2006, pp. 1-4, doi: https://doi.org/10.1109/ISPSD.2006.1666064.

Rahimo M., Schlapbach U., Kopta A., Vobecky J., Schneider D., Baschnagel A. A High Current 3300V Module Employing Reverse Conducting IGBTs Setting a New Benchmark in Output Power Capability. 2008 20th International Symposium on Power Semiconductor Devices and IC's, 2008, pp. 68-71, doi: https://doi.org/10.1109/ISPSD.2008.4538899.

Ji B., Song X., Sciberras E., Cao W., Hu Y., Pickert V. Multiobjective Design Optimization of IGBT Power Modules Considering Power Cycling and Thermal Cycling. IEEE Transactions on Power Electronics, 2015, vol. 30, no. 5, pp. 2493-2504. doi: https://doi.org/10.1109/TPEL.2014.2365531.

Busca C., Teodorescu R., Blaabjerg F., Munk-Nielsen S., Helle L., Abeyasekera T., Rodriguez P. An overview of the reliability prediction related aspects of high power IGBTs in wind power applications. Microelectronics Reliability, 2011, vol. 51, no. 9-11, pp. 1903-1907. doi: https://doi.org/10.1016/j.microrel.2011.06.053.

Alvarez R., Filsecker F., Bernet S. Comparison of press-pack IGBT at hard switching and clamp operation for medium voltage converters. Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference on, Aug. 30 2011 – Sept. 1 2011. Available at: https://www.researchgate.net/publication/252044893_Comparison_of_press-pack_IGBT_at_hard_switching_and_clamp_operation_for_medium_voltage_converters (Accessed 20 August 2021).

Available at: http://www.heraeus.com (Accessed 20 August 2021).

Available at: http://www.semikron.com (Accessed 14 June 2021).

Camm E.H., Behnke M.R., Bolado O., Bollen M., Bradt M., Brooks C., Dilling W., Edds M., Hejdak W.J., Houseman D., Klein S., Li F., Li J., Maibach P., Nicolai T., Patino J., Pasupulati S.V., Samaan N., Saylors S., Siebert T., Smith T., Starke M., Walling R. Characteristics of wind turbine generators for wind power plants. 2009 IEEE Power & Energy Society General Meeting, 2009, pp. 1-5. doi: https://doi.org/10.1109/PES.2009.5275330.

Rather Z.H., Chen Z., Thøgersen P., Lund P. Dynamic Reactive Power Compensation of Large-Scale Wind Integrated Power System. IEEE Transactions on Power Systems, 2015, vol. 30, no. 5, pp. 2516-2526. doi: https://doi.org/10.1109/TPWRS.2014.2365632.

Behnke M., Ellis A., Kazachkov Y., McCoy T., Muljadi E., Price W., Sanchez-Gasca J. Development and Validation of WECC Variable Speed Wind Turbine Dynamic Models for Grid Integration Studies. AWEA’s 2007 Wind Power Conference, Los Angeles, California, June 4-7, 2007. Available at: https://digital.library.unt.edu/ark:/67531/metadc887008 (Accessed 20 August 2021).




How to Cite

Ghanem, S., Fandi, G., Kyncl, J., & Müller, Z. (2022). A novel scheme for control by active and reactive power utilized in gearless variable speed wind turbine system with PMSG connected to the grid. Electrical Engineering & Electromechanics, (2), 56–68. https://doi.org/10.20998/2074-272X.2022.2.09



Power Stations, Grids and Systems