Influence of doping additive on thermophysical and rheological properties of halogen-free polymer composition for cable insulation and sheaths

Authors

DOI:

https://doi.org/10.20998/2074-272X.2022.2.06

Keywords:

cable production, doping additive, rheological properties, melting temperature, decomposition onset temperature

Abstract

Introduction. The demand for halogen-free fire-resistant compositions for the manufacture of fire-retardant wires and cables is constantly growing. Problem. Therefore, the creation and further processing of these materials is an urgent problem. Goal. The aim of the article is to study the effect of the doping additive on the thermophysical and rheological properties of halogen-free compositions for power cables with voltage 1 kV with the determination of both the temperatures of phase and structural transformations of polymer compositions. Methodology. Experiments investigating the phase transformations were carried out with the help device of thermogravimetric analysis and differential scanning calorimetry TGA/DSC 1/1100 SF of METTLER TOLEDO company. Rheological studies of polymeric materials were conducted by using the method of capillary viscosimetry in the device IIRT–AM. Results. The influence of the doping additive on the formation of the supramolecular structure of the filled polymer compositions for cable products was determined, that resulted in the temperature increase of the decomposition beginning by 11 °С and the end of decomposition by 7 °С. Originality. The effect of a doping additive on reducing the effective melt viscosity of a polymer composition from 6·104 to 1·104 Pa·s with increasing shear rate has been shown for the first time. The shear rate of the polymer composition containing the doping additive increases from 0.5 to 20 s–1 with increasing shear stress. Practical value. The research results provide an opportunity to reasonably approach the development of effective technological processes for the manufacture of the insulation and sheaths of power cables from halogen-free polymer compositions.

Author Biographies

V. M. Zolotaryov, PJSC «YUZHCABLE WORKS»

Doctor of Technical Science, Professor

O. V. Chulieieva, PJSC «YUZHCABLE WORKS»

Doctor of Technical Science

V. L. Chulieiev, PJSC «YUZHCABLE WORKS»

PhD

T. A. Kuleshova, PJSC «YUZHCABLE WORKS»

Senior Engineer

M. S. Suslin, PJSC «YUZHCABLE WORKS»

Engineer

References

Beyer G. The Global Cable Industry: Materials, Markets, Products. Wiley Publ., 2021. doi: https://doi.org/10.1002/9783527822263.

Meinier R., Sonnier R., Zavaleta P., Suard S., Ferry L. Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. Journal of Hazardous Materials, 2018, vol. 342, pp. 306-316. doi: https://doi.org/10.1016/j.jhazmat.2017.08.027.

Papaspyrides C.D., Kiliaris P. Polymer Green Flame Retardants. Elsevier, 2014. doi: https://doi.org/10.1016/C2010-0-66406-6.

Nazir R., Gooneie A., Lehner S., Jovic M., Rupper P., Ott N., Hufenus R., Gaan S. Alkyl sulfone bridged phosphorus flae-retardants for polypropylene. Materials & Design, 2021, vol. 200, pp. 109459. doi: https://doi.org/10.1016/j.matdes.2021.109459.

VISCOSPEED in HFFR compounds: Big impact with minimal dosage. Compounding World, October, 2020, pp. 48-49. Available at: https://content.yudu.com/web/1rl19/0A1rl2p/CWOct20/html/print/CW%20October%202020%20pdf%20for%20download.pdf (Accessed 19 November 2021).

Munstedt H. Rheological Measurements and Structural Analysis of Polymeric Materials. Polymers, 2021, vol. 13, no. 7, p. 1123. doi: https://doi.org/10.3390/polym13071123.

Munstedt H. Rheological and Morphological Properties of Dispersed Polymeric Materials. Carl Hanser Verlag Publ., 2016. 473 p. doi: https://doi.org/10.3139/9781569906088.

Dealy J.M., Wissbrun K.F. Melt Rheology and Its Role in Plastics Processing – Theory and Applications. Springer Science & Business Media, 1990, 680 p. doi: https://doi.org/10.1007/978-94-009-2163-4.

Agassant J.-F., Avenas P., Carreau P.J., Vergnes B., Vincent M. Polymer Processing Principles and Modelling. Carl Hanser Verlag Publ., 2017. 883 p. doi: https://doi.org/10.3139/9781569906064.

Barnes H.A. Rheology: Principles, Measurements and Applications. Powder Technology, 1996, vol. 86, no. 3, pp. 313. doi: https://doi.org/10.1016/S0032-5910(96)90008-X.

Brereton M.G. Dynamics of Polymeric Liquids. Physics Bulletin, 1978, vol. 29, no. 1, pp. 26. doi: https://doi.org/10.1088/0031-9112/29/1/038.

Mitsoulis E., Hatzikiriakos S.G. Rheological Properties Related to Extrusion of Polyolefins. Polymers, 2021, vol. 13, no. 4, pp. 489. doi: https://doi.org/10.3390/polym13040489.

Cogswell F.N. Measuring the Extensional Rheology of Polymer Melts. Transactions of the Society of Rheology, 1972, vol. 16, no. 3, pp. 383-403. doi: https://doi.org/10.1122/1.549257.

Pearson J.R.A. Polymer melt rheology: a guide for industrial practice. Journal of Non-Newtonian Fluid Mechanics, 1981, vol. 8. no. 3-4, pp. 365-366. doi: https://doi.org/10.1016/0377-0257(81)80033-X.

Zatloukal M. Measurements and modeling of temperature-strain rate dependent uniaxial and planar extensional viscosities for branched LDPE polymer melt. Polymer, 2016, vol. 104, pp. 258-267. doi: https://doi.org/10.1016/j.polymer.2016.04.053.

Ansari M., Alabbas A., Hatzikiriakos S.G., Mitsoulis E. Entry Flow of Polyethylene Melts in Tapered Dies. International Polymer Processing, 2010, vol. 25, no. 4, pp. 287-296. doi: https://doi.org/10.3139/217.2360.

Padmanabhan M., Macosko C.W., Padmanabhan M. Extensional viscosity from entrance pressure drop measurements. Rheologica Acta, 1997, vol. 36, no. 2, pp. 144-151. doi: https://doi.org/10.1007/BF00366820.

Laun H.M. Pressure dependent viscosity and dissipative heating in capillary rheometry of polymer melts. Rheologica Acta, 2003, vol. 42, no. 4, pp. 295-308. doi: https://doi.org/10.1007/s00397-002-0291-6.

Laun H.M. Capillary rheometry for polymer melts revisited. Rheologica Acta, 2004, vol. 43, no. 5, pp. 509-528. doi: https://doi.org/10.1007/s00397-004-0387-2.

Brochard F., De Gennes P.G. Shear-dependent slippage at a polymer/solid interface. Langmuir, 1992, vol. 8, no. 12, pp. 3033-3037. doi: https://doi.org/10.1021/la00048a030.

Hatzikiriakos S.G., Dealy J.M. Wall slip of molten high density polyethylenes. II. Capillary rheometer studies. Journal of Rheology, 1992, vol. 36, no. 4, pp. 703-741. doi: https://doi.org/10.1122/1.550313.

Brochard-Wyart F., Gay C., de Gennes P.-G. Slippage of Polymer Melts on Grafted Surfaces. Macromolecules, 1996, vol. 29, no. 1, pp. 377-382. doi: https://doi.org/10.1021/ma950753j.

Hatzikiriakos S. G. Appropriate Boundary Conditions in the Flow of Molten Polymers. International Polymer Processing, 2010, vol. 25, no. 1, pp. 55-62. doi: https://doi.org/10.3139/217.2304.

Hatzikiriakos S.G. Wall slip of molten polymers. Progress in Polymer Science, 2012, vol. 37, no. 4, pp. 624-643. doi: https://doi.org/10.1016/j.progpolymsci.2011.09.004.

Hatzikiriakos S.G. Slip mechanisms in complex fluid flows. Soft Matter, 2015, vol. 11, no. 40, pp. 7851-7856. doi: https://doi.org/10.1039/C5SM01711D.

Sokolov A.V., Roedolf D. Introduction to practical rheology of polymers. Plasticheskie massy, 2018, no. 5-6, pp 31-34. doi: https://doi.org/10.35164/0554-2901-2018-5-6-31-34.

Chulieieva O., Zolotaryov V. Effect of the modifier on the thermophysical properties of fireproof ethylene-vinyl acetate copolymer composition materials. Technology Audit and Production Reserves, 2018, vol. 6, no. 1(44), pp. 23-28. doi: https://doi.org/10.15587/2312-8372.2018.150294.

Sadova A.N., Bortnikov V.G., Zaikin A.E. Praktikum po tekhnologii pererabotki i ispytaniiam polimerov i kompozitsionnykh materialov [Workshop on processing technology and testing of polymers and composite materials]. 2011, Moscow, KolosS Publ., 191 p. (Rus).

Weil E.D., Levchik S.V. Flame Retardants for Plastics and Textiles. Carl Hanser Verlag Publ., 2015. doi: https://doi.org/10.3139/9781569905791.fm.

Published

2022-04-18

How to Cite

Zolotaryov, V. M., Chulieieva, O. V., Chulieiev, V. L., Kuleshova, T. A., & Suslin, M. S. (2022). Influence of doping additive on thermophysical and rheological properties of halogen-free polymer composition for cable insulation and sheaths. Electrical Engineering & Electromechanics, (2), 35–40. https://doi.org/10.20998/2074-272X.2022.2.06

Issue

Section

Electrical Insulation and Cable Engineering