Influence of doping additive on thermophysical and rheological properties of halogen-free polymer composition for cable insulation and sheaths
DOI:
https://doi.org/10.20998/2074-272X.2022.2.06Keywords:
cable production, doping additive, rheological properties, melting temperature, decomposition onset temperatureAbstract
Introduction. The demand for halogen-free fire-resistant compositions for the manufacture of fire-retardant wires and cables is constantly growing. Problem. Therefore, the creation and further processing of these materials is an urgent problem. Goal. The aim of the article is to study the effect of the doping additive on the thermophysical and rheological properties of halogen-free compositions for power cables with voltage 1 kV with the determination of both the temperatures of phase and structural transformations of polymer compositions. Methodology. Experiments investigating the phase transformations were carried out with the help device of thermogravimetric analysis and differential scanning calorimetry TGA/DSC 1/1100 SF of METTLER TOLEDO company. Rheological studies of polymeric materials were conducted by using the method of capillary viscosimetry in the device IIRT–AM. Results. The influence of the doping additive on the formation of the supramolecular structure of the filled polymer compositions for cable products was determined, that resulted in the temperature increase of the decomposition beginning by 11 °С and the end of decomposition by 7 °С. Originality. The effect of a doping additive on reducing the effective melt viscosity of a polymer composition from 6·104 to 1·104 Pa·s with increasing shear rate has been shown for the first time. The shear rate of the polymer composition containing the doping additive increases from 0.5 to 20 s–1 with increasing shear stress. Practical value. The research results provide an opportunity to reasonably approach the development of effective technological processes for the manufacture of the insulation and sheaths of power cables from halogen-free polymer compositions.
References
Beyer G. The Global Cable Industry: Materials, Markets, Products. Wiley Publ., 2021. doi: https://doi.org/10.1002/9783527822263.
Meinier R., Sonnier R., Zavaleta P., Suard S., Ferry L. Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. Journal of Hazardous Materials, 2018, vol. 342, pp. 306-316. doi: https://doi.org/10.1016/j.jhazmat.2017.08.027.
Papaspyrides C.D., Kiliaris P. Polymer Green Flame Retardants. Elsevier, 2014. doi: https://doi.org/10.1016/C2010-0-66406-6.
Nazir R., Gooneie A., Lehner S., Jovic M., Rupper P., Ott N., Hufenus R., Gaan S. Alkyl sulfone bridged phosphorus flae-retardants for polypropylene. Materials & Design, 2021, vol. 200, pp. 109459. doi: https://doi.org/10.1016/j.matdes.2021.109459.
VISCOSPEED in HFFR compounds: Big impact with minimal dosage. Compounding World, October, 2020, pp. 48-49. Available at: https://content.yudu.com/web/1rl19/0A1rl2p/CWOct20/html/print/CW%20October%202020%20pdf%20for%20download.pdf (Accessed 19 November 2021).
Munstedt H. Rheological Measurements and Structural Analysis of Polymeric Materials. Polymers, 2021, vol. 13, no. 7, p. 1123. doi: https://doi.org/10.3390/polym13071123.
Munstedt H. Rheological and Morphological Properties of Dispersed Polymeric Materials. Carl Hanser Verlag Publ., 2016. 473 p. doi: https://doi.org/10.3139/9781569906088.
Dealy J.M., Wissbrun K.F. Melt Rheology and Its Role in Plastics Processing – Theory and Applications. Springer Science & Business Media, 1990, 680 p. doi: https://doi.org/10.1007/978-94-009-2163-4.
Agassant J.-F., Avenas P., Carreau P.J., Vergnes B., Vincent M. Polymer Processing Principles and Modelling. Carl Hanser Verlag Publ., 2017. 883 p. doi: https://doi.org/10.3139/9781569906064.
Barnes H.A. Rheology: Principles, Measurements and Applications. Powder Technology, 1996, vol. 86, no. 3, pp. 313. doi: https://doi.org/10.1016/S0032-5910(96)90008-X.
Brereton M.G. Dynamics of Polymeric Liquids. Physics Bulletin, 1978, vol. 29, no. 1, pp. 26. doi: https://doi.org/10.1088/0031-9112/29/1/038.
Mitsoulis E., Hatzikiriakos S.G. Rheological Properties Related to Extrusion of Polyolefins. Polymers, 2021, vol. 13, no. 4, pp. 489. doi: https://doi.org/10.3390/polym13040489.
Cogswell F.N. Measuring the Extensional Rheology of Polymer Melts. Transactions of the Society of Rheology, 1972, vol. 16, no. 3, pp. 383-403. doi: https://doi.org/10.1122/1.549257.
Pearson J.R.A. Polymer melt rheology: a guide for industrial practice. Journal of Non-Newtonian Fluid Mechanics, 1981, vol. 8. no. 3-4, pp. 365-366. doi: https://doi.org/10.1016/0377-0257(81)80033-X.
Zatloukal M. Measurements and modeling of temperature-strain rate dependent uniaxial and planar extensional viscosities for branched LDPE polymer melt. Polymer, 2016, vol. 104, pp. 258-267. doi: https://doi.org/10.1016/j.polymer.2016.04.053.
Ansari M., Alabbas A., Hatzikiriakos S.G., Mitsoulis E. Entry Flow of Polyethylene Melts in Tapered Dies. International Polymer Processing, 2010, vol. 25, no. 4, pp. 287-296. doi: https://doi.org/10.3139/217.2360.
Padmanabhan M., Macosko C.W., Padmanabhan M. Extensional viscosity from entrance pressure drop measurements. Rheologica Acta, 1997, vol. 36, no. 2, pp. 144-151. doi: https://doi.org/10.1007/BF00366820.
Laun H.M. Pressure dependent viscosity and dissipative heating in capillary rheometry of polymer melts. Rheologica Acta, 2003, vol. 42, no. 4, pp. 295-308. doi: https://doi.org/10.1007/s00397-002-0291-6.
Laun H.M. Capillary rheometry for polymer melts revisited. Rheologica Acta, 2004, vol. 43, no. 5, pp. 509-528. doi: https://doi.org/10.1007/s00397-004-0387-2.
Brochard F., De Gennes P.G. Shear-dependent slippage at a polymer/solid interface. Langmuir, 1992, vol. 8, no. 12, pp. 3033-3037. doi: https://doi.org/10.1021/la00048a030.
Hatzikiriakos S.G., Dealy J.M. Wall slip of molten high density polyethylenes. II. Capillary rheometer studies. Journal of Rheology, 1992, vol. 36, no. 4, pp. 703-741. doi: https://doi.org/10.1122/1.550313.
Brochard-Wyart F., Gay C., de Gennes P.-G. Slippage of Polymer Melts on Grafted Surfaces. Macromolecules, 1996, vol. 29, no. 1, pp. 377-382. doi: https://doi.org/10.1021/ma950753j.
Hatzikiriakos S. G. Appropriate Boundary Conditions in the Flow of Molten Polymers. International Polymer Processing, 2010, vol. 25, no. 1, pp. 55-62. doi: https://doi.org/10.3139/217.2304.
Hatzikiriakos S.G. Wall slip of molten polymers. Progress in Polymer Science, 2012, vol. 37, no. 4, pp. 624-643. doi: https://doi.org/10.1016/j.progpolymsci.2011.09.004.
Hatzikiriakos S.G. Slip mechanisms in complex fluid flows. Soft Matter, 2015, vol. 11, no. 40, pp. 7851-7856. doi: https://doi.org/10.1039/C5SM01711D.
Sokolov A.V., Roedolf D. Introduction to practical rheology of polymers. Plasticheskie massy, 2018, no. 5-6, pp 31-34. doi: https://doi.org/10.35164/0554-2901-2018-5-6-31-34.
Chulieieva O., Zolotaryov V. Effect of the modifier on the thermophysical properties of fireproof ethylene-vinyl acetate copolymer composition materials. Technology Audit and Production Reserves, 2018, vol. 6, no. 1(44), pp. 23-28. doi: https://doi.org/10.15587/2312-8372.2018.150294.
Sadova A.N., Bortnikov V.G., Zaikin A.E. Praktikum po tekhnologii pererabotki i ispytaniiam polimerov i kompozitsionnykh materialov [Workshop on processing technology and testing of polymers and composite materials]. 2011, Moscow, KolosS Publ., 191 p. (Rus).
Weil E.D., Levchik S.V. Flame Retardants for Plastics and Textiles. Carl Hanser Verlag Publ., 2015. doi: https://doi.org/10.3139/9781569905791.fm.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 V. M. Zolotaryov, O. V. Chulieieva, V. L. Chulieiev, T. A. Kuleshova, M. S. Suslin
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.