The method of limitation of dynamic loads of nonlinear electromechanical systems under state vector robust control

Authors

DOI:

https://doi.org/10.20998/2074-272X.2022.2.01

Keywords:

nonlinear electromechanical systems, state vector robust control, Hamilton–Jacobi–Isaacs equations, limitation of dynamic loads, computer simulation

Abstract

Aim. Development of the method of limitation of dynamic loads of nonlinear electromechanical systems under state vector robust control. Methodology. Limitation of dynamic loads of nonlinear electromechanical systems is carried out using the minimum selector of choosing the minimum value of the control vector from formed with the help of local controllers and with the vector of maximum control values. Calculation of the gain coefficients of nonlinear robust controllers and observers are based on solutions of the Hamilton–Jacob–Isaacs equations. Results. The results of computer simulation of transitional processes of main roll drives of the rolling mill 950 of the Zaporozhye plant «Dnіprospetsstal» with limitation of dynamic loads are given. Originality. For the first time the method of limitation of dynamic loads of nonlinear electromechanical systems under state vector robust control based on minimum selector and nonlinear robust control of state variables which is needed limitation is developed. Practical value. Examples of transitional processes of main roll drives of the rolling mill 950 of the Zaporozhye plant «Dnіprospetsstal» with limitation of dynamic loads are given.

Author Biographies

B. I. Kuznetsov, A. Pidhornyi Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine

Doctor of Technical Science, Professor

T. B. Nikitina, Educational scientific professional pedagogical Institute of Ukrainian Engineering Pedagogical Academy

Doctor of Technical Science, Professor

I. V. Bovdui, A. Pidhornyi Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine

PhD, Senior Research Scientist

O. V. Voloshko, A. Pidhornyi Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine

PhD, Junior Research Scientist

V. V. Kolomiets, Educational scientific professional pedagogical Institute of Ukrainian Engineering Pedagogical Academy

PhD, Associate Professor

B. B. Kobylianskiy, Educational scientific professional pedagogical Institute of Ukrainian Engineering Pedagogical Academy

PhD, Associate Professor

References

Ostroverkhov M., Chumack V., Monakhov E., Ponomarev A. Hybrid Excited Synchronous Generator for Microhydropower Unit. 2019 IEEE 6th International Conference on Energy Smart Systems (ESS), Kyiv, Ukraine, 2019, pp. 219-222. doi: https://doi.org/10.1109/ess.2019.8764202.

Ostroverkhov M., Chumack V., Monakhov E. Ouput Voltage Stabilization Process Simulation in Generator with Hybrid Excitation at Variable Drive Speed. 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 2019, pp. 310-313. doi: https://doi.org/10.1109/ukrcon.2019.8879781.

Shmatko O., Volosyuk V., Zhyla S., Pavlikov V., Ruzhentsev N., Tserne E., Popov A., Ostroumov I., Kuzmenko N., Dergachov K., Sushchenko O., Averyanova Y., Zaliskyi M., Solomentsev O., Havrylenko O., Kuznetsov B., Nikitina T. Synthesis of the optimal algorithm and structure of contactless optical device for estimating the parameters of statistically uneven surfaces. Radioelectronic and Computer Systems, 2021, no. 4, pp. 199-213. doi: https://doi.org/10.32620/reks.2021.4.16.

Volosyuk V., Zhyla S., Pavlikov V., Ruzhentsev N., Tserne E., Popov A., Shmatko O., Dergachov K., Havrylenko O., Ostroumov I., Kuzmenko N., Sushchenko O., Averyanova Yu., Zaliskyi M., Solomentsev O., Kuznetsov B., Nikitina T. Optimal Method for Polarization Selection of Stationary Objects Against the Background of the Earth’s Surface. International Journal of Electronics and Telecommunications, 2022, vol. 68, no. 1, pp. 83-89. doi: https://doi.org/10.24425/ijet.2022.139852.

Cuzzola F.A., Parisini T. Automation and Control Solutions for Flat Strip Metal Processing. The Control Handbook. 2nd Edition, 2010, pp. 18-36. doi: https://doi.org/10.1201/b10382-22.

Kozhevnikov A., Kozhevnikova I., Bolobanova N., Smirnov A. Chatter prevention in stands of continuous cold rolling mills. Metalurgija, 2020, vol. 59, no. 1, pp. 55-58. Available at: https://hrcak.srce.hr/224759 (accessed 06 October 2021).

Šinik V., Despotović Ž., Prvulović S., Desnica E., Pekez J., Tolmač J., Palinkaš I. Higher harmonics of current caused by the operation of rolling mill. IX International Conference Industrial engineering and Environmental Protection 2019 (IIZS 2019), 3-4 October 2019, Zrenjanin, Serbia, pp. 50-57. Available at: https://www.researchgate.net/publication/336262031_HIGHER_HARMONICS_OF_CURRENT_CAUSED_BY_THE_OPERATION_OF_ROLLING_MILL (accessed 06 October 2021).

Krot P.V., Korennoy V.V. Nonlinear Effects in Rolling Mills Dynamics. Proceedings of the 5th International Conference on Nonlinear Dynamics ND-KhPI2016, September 27-30, 2016, Kharkov, Ukraine. Available at: https://www.researchgate.net/publication/308901445_Nonlinear_Effects_in_Rolling_Mills_Dynamics (accessed 06 October 2021).

Kugi A., Schlacher K., Novak R. Nonlinear control in rolling mills: a new perspective. IEEE Transactions on Industry Applications, 2001, vol. 37, no. 5, pp. 1394-1402. doi: https://doi.org/10.1109/28.952515.

Martynenko G. Practical application of the analytical method of electromagnetic circuit analysis for determining magnetic forces in active magnetic bearings. 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP), 2020, pp. 1-4, doi: https://doi.org/10.1109/paep49887.2020.9240774.

Martynenko G., Martynenko V. Modeling of the dynamics of rotors of an energy gas turbine installation using an analytical method for analyzing active magnetic bearing circuits. 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek), 2020, pp. 92-97 .doi: https://doi.org/10.1109/KhPIWeek51551.2020.9250156.

Buriakovskyi S.G., Maslii A.S., Pasko O.V., Smirnov V.V. Mathematical modelling of transients in the electric drive of the switch – the main executive element of railway automation. Electrical Engineering & Electromechanics, 2020, no. 4, pp. 17-23. doi: https://doi.org/10.20998/2074-272X.2020.4.03.

Tytiuk V., Chornyi O., Baranovskaya M., Serhiienko S., Zachepa I., Tsvirkun L., Kuznetsov V., Tryputen N. Synthesis of a fractional-order PIλDμ-controller for a closed system of switched reluctance motor control. Eastern-European Journal of Enterprise Technologies, 2019, no. 2 (98), pp. 35-42. doi: https://doi.org/10.15587/1729-4061.2019.160946.

Zagirnyak M., Chornyi O., Zachepa I. The autonomous sources of energy supply for the liquidation of technogenic accidents. Przeglad Elektrotechniczny, 2019, no. 5, pp. 47-50. doi: https://doi.org/10.15199/48.2019.05.12.

Chornyi O., Serhiienko S. A virtual complex with the parametric adjustment to electromechanical system parameters. Technical Electrodynamics, 2019, pp. 38-41. doi: https://doi.org/10.15407/techned2019.01.038.

Shchur I., Kasha L., Bukavyn M. Efficiency Evaluation of Single and Modular Cascade Machines Operation in Electric Vehicle. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 2020, pp. 156-161. doi: https://doi.org/10.1109/tcset49122.2020.235413.

Shchur I., Turkovskyi V. Comparative Study of Brushless DC Motor Drives with Different Configurations of Modular Multilevel Cascaded Converters. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 2020, pp. 447-451. doi: https://doi.org/10.1109/tcset49122.2020.235473.

Ostroumov I., Kuzmenko N., Sushchenko O., Pavlikov V., Zhyla S., Solomentsev O., Zaliskyi M., Averyanova Y., Tserne E., Popov A., Volosyuk V., Ruzhentsev N., Dergachov K., Havrylenko O., Kuznetsov B., Nikitina T., Shmatko O. Modelling and simulation of DME navigation global service volume. Advances in Space Research, 2021, vol. 68, no. 8, pp. 3495-3507. doi: https://doi.org/10.1016/j.asr.2021.06.027.

Averyanova Y., Sushchenko O., Ostroumov I., Kuzmenko N., Zaliskyi M., Solomentsev O., Kuznetsov B., Nikitina T., Havrylenko O., Popov A., Volosyuk V., Shmatko O., Ruzhentsev N., Zhyla S., Pavlikov V., Dergachov K., Tserne E. UAS cyber security hazards analysis and approach to qualitative assessment. In: Shukla S., Unal A., Varghese Kureethara J., Mishra D.K., Han D.S. (eds) Data Science and Security. Lecture Notes in Networks and Systems, 2021, vol. 290, pp. 258-265. Springer, Singapore. doi: https://doi.org/10.1007/978-981-16-4486-3_28.

Zaliskyi M., Solomentsev O., Shcherbyna O., Ostroumov I., Sushchenko O., Averyanova Y., Kuzmenko N., Shmatko O., Ruzhentsev N., Popov A., Zhyla S., Volosyuk V., Havrylenko O., Pavlikov V., Dergachov K., Tserne E., Nikitina T., Kuznetsov B. Heteroskedasticity analysis during operational data processing of radio electronic systems. In: Shukla S., Unal A., Varghese Kureethara J., Mishra D.K., Han D.S. (eds) Data Science and Security. Lecture Notes in Networks and Systems, 2021, vol. 290, pp. 168-175. Springer, Singapore. doi: https://doi.org/10.1007/978-981-16-4486-3_18.

Sushchenko O.A. Robust control of angular motion of platform with payload based on H∞-synthesis. Journal of Automation and Information Sciences, 2016, vol. 48, no. 12, pp. 13-26. doi: https://doi.org/10.1615/jautomatinfscien.v48.i12.20.

Chikovani V., Sushchenko O. Self-compensation for disturbances in differential vibratory gyroscope for space navigation. International Journal of Aerospace Engineering, 2019, vol. 2019, Article ID 5234061, 9 p. doi: https://doi.org/10.1155/2019/5234061.

Gal’chenko V.Y., Vorob’ev M.A. Structural synthesis of attachable eddy-current probes with a given distribution of the probing field in the test zone. Russian Journal of Nondestructive Testing, Jan. 2005, vol. 41, no. 1, pp. 29-33. doi: https://doi.org/10.1007/s11181-005-0124-7.

Halchenko V.Y., Ostapushchenko D.L., Vorobyov M.A. Mathematical simulation of magnetization processes of arbitrarily shaped ferromagnetic test objects in fields of given spatial configurations. Russian Journal of Nondestructive Testing, Sep. 2008, vol. 44, no. 9, pp. 589-600. doi: https://doi.org/10.1134/S1061830908090015.

Ostroumov I., Kuzmenko N., Sushchenko O., Zaliskyi M., Solomentsev O., Averyanova Y., Zhyla S., Pavlikov V., Tserne E., Volosyuk V., Dergachov K., Havrylenko O., Shmatko O., Popov A., Ruzhentsev N., Kuznetsov B., Nikitina T. A probability estimation of aircraft departures and arrivals delays. In: Gervasi O. et al. (eds) Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science, vol. 12950, pp. 363-377. Springer, Cham. doi: https://doi.org/10.1007/978-3-030-86960-1_26.

Chystiakov P., Chornyi O., Zhautikov B., Sivyakova G. Remote control of electromechanical systems based on computer simulators. 2017 International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk, Ukraine, 2017, pp. 364-367. doi: https://doi.org/10.1109/mees.2017.8248934.

Zagirnyak M., Bisikalo O., Chorna O., Chornyi O. A Model of the Assessment of an Induction Motor Condition and Operation Life, Based on the Measurement of the External Magnetic Field. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), Kharkiv, 2018, pp. 316-321. doi: https://doi.org/10.1109/ieps.2018.8559564.

Ummels M. Stochastic Multiplayer Games Theory and Algorithms. Amsterdam University Press, 2010. 174 p.

Shoham Y., Leyton-Brown K. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, 2009. 504 p.

Xin-She Yang, Zhihua Cui, Renbin Xiao, Amir Hossein Gandomi, Mehmet Karamanoglu. Swarm Intelligence and Bio-Inspired Computation: Theory and Applications, Elsevier Inc., 2013. 450 p.

Zilzter Eckart. Evolutionary algorithms for multiobjective optimizations: methods and applications. PhD Thesis Swiss Federal Institute of Technology, Zurich, 1999. 114 p.

Xiaohui Hu, Eberhart R.C., Yuhui Shi. Particle swarm with extended memory for multiobjective optimization. Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706), Indianapolis, IN, USA, 2003, pp. 193-197. doi: https://doi.org/10.1109/sis.2003.1202267.

Pulido G.T., Coello C.A.C. A constraint-handling mechanism for particle swarm optimization. Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), Portland, OR, USA, 2004, vol. 2, pp. 1396-1403. doi: https://doi.org/10.1109/cec.2004.1331060.

Michalewicz Z., Schoenauer M. Evolutionary Algorithms for Constrained Parameter Optimization Problems. Evolutionary Computation, 1996, vol. 4, no. 1, pp. 1-32. doi: https://doi.org/10.1162/evco.1996.4.1.1.

Parsopoulos K.E., Vrahatis M.N. Particle swarm optimization method for constrained optimization problems. Proceedings of the Euro-International Symposium on Computational Intelligence, 2002, pp. 174-181.

Downloads

Published

2022-04-18

How to Cite

Kuznetsov, B. I., Nikitina, T. B., Bovdui, I. V., Voloshko, O. V., Kolomiets, V. V., & Kobylianskiy, B. B. (2022). The method of limitation of dynamic loads of nonlinear electromechanical systems under state vector robust control. Electrical Engineering & Electromechanics, (2), 3–10. https://doi.org/10.20998/2074-272X.2022.2.01

Issue

Section

Electrotechnical complexes and Systems

Most read articles by the same author(s)

1 2 3 > >>