Maximum power control of a wind generator with an energy storage system to fix the delivered power
DOI:
https://doi.org/10.20998/2074-272X.2022.2.07Keywords:
maximum power point tracking, flywheel energy storage system, doubly fed induction machine, cycloconverterAbstract
Introduction. The power extracted from the wind turbine and delivered to the electrical network must be maximum and constant and the whole system should be have a good compromise between efficiency and cost. In order to attenuate this objective, a doubly fed induction machine, a cycloconverter, a maximum power point tracking algorithm and a flywheel energy storage system constitute a very interesting solution among many others that have been proposed. Novelty. The novelty of the proposed work is to use a doubly fed induction machine and a three pulses cycloconverter to reduce the cost and to integrate a flywheel energy storage system between the wind generator and the electrical network to maintain the constancy of the power sent to the network, following the instability of the wind. The proposed work uses a maximum power point tracking algorithm to capture the optimal power available in the wind in order to increase the efficiency of the system. Results. A detailed study of the proposed system is presented with the detailed dynamic modeling equations and simulation results are conducted to show the performance and the efficiency of the suggested work.
References
Beltran B., Ahmed-Ali T., Benbouzid M. High-Order Sliding-Mode Control of Variable-Speed Wind Turbines. IEEE Transactions on Industrial Electronics, 2009, vol. 56, no. 9, pp. 3314-3321. doi: https://doi.org/10.1109/TIE.2008.2006949.
Longya Xu, Wei Cheng. Torque and reactive power control of a doubly fed induction machine by position sensorless scheme. IEEE Transactions on Industry Applications, 1995, vol. 31, no. 3, pp. 636-642. doi: https://doi.org/10.1109/28.382126.
Timpe W. Cycloconverter Drives for Rolling Mills. IEEE Transactions on Industry Applications, 1982, vol. IA-18, no. 4, pp. 400-404. doi: https://doi.org/10.1109/TIA.1982.4504099.
Hagmann R. AC-cycloconverter drives for cold and hot rolling mill applications. Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting, 1991, pp. 1134-1140. doi: https://doi.org/10.1109/IAS.1991.178005.
Jacovides L.J., Matouka M.F., Shimer D.W. A Cycloconverter - Synchronous Motor Drive for Traction Applications. IEEE Transactions on Industry Applications, 1981, vol. IA-17, no. 4, pp. 407-418. doi: https://doi.org/10.1109/TIA.1981.4503968.
Smith G.A. Static Scherbius system of induction-motor speed control. Proceedings of the Institution of Electrical Engineers, 1977, vol. 124, no. 6, p. 557. doi: https://doi.org/10.1049/piee.1977.0114.
Davigny A. Participation aux services système de fermes d’éoliennes à vitesse variable intégrant du stockage inertiel d’énergie. Thèse de doctorat, Hautes Études d’Ingénieur, 2007. (Fra).
Cimuca G.O. Système inertiel de stockage d'énergie associé à des générateurs éoliens. PhD Dissertation, Lille, ENSAM, 2005. (Fra).
Leclercq L. Apport du stockage inertiel associé à des éoliennes dans un réseau électrique en vue d’assurer des services systèmes. University of Lille in France, 2004. (Fra).
Boutoubat M., Mokrani L., Machmoum M. Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement. Renewable Energy, 2013, vol. 50, pp. 378-386. doi: https://doi.org/10.1016/j.renene.2012.06.058.
Tang C.Y., Guo Y., Jiang J.N. Nonlinear Dual-Mode Control of Variable-Speed Wind Turbines With Doubly Fed Induction Generators. IEEE Transactions on Control Systems Technology, 2011, vol. 19, no. 4, pp. 744-756. doi: https://doi.org/10.1109/TCST.2010.2053931.
El-Sattar A.A., Saad N.H., El-Dein M.Z.S. Dynamic response of doubly fed induction generator variable speed wind turbine under fault. Electric Power Systems Research, 2008, vol. 78, no. 7, pp. 1240-1246. doi: https://doi.org/10.1016/j.epsr.2007.10.005.
Gaillard A. Système éolien basée sur une mada: contibution à l'étude de la qualité de l'énergie électrique et de la continuité de service. PhD Dissertation, Nancy, 2010. (Fra).
Boumassata A., Kerdoun D. Modeling, Simulation and Control of Wind Energy Conversion System based on Doubly Fed Induction Generator and Cycloconverter. Advances in Electrical and Computer Engineering, 2014, vol. 14, no. 2, pp. 43-48. doi: https://doi.org/10.4316/AECE.2014.02007.
Kairous D., Wamkeue R. DFIG-based fuzzy sliding-mode control of WECS with a flywheel energy storage. Electric Power Systems Research, 2012, vol. 93, pp. 16-23. doi: https://doi.org/10.1016/j.epsr.2012.07.002.
Kassem A.M., Hasaneen K.M., Yousef A.M. Dynamic modeling and robust power control of DFIG driven by wind turbine at infinite grid. International Journal of Electrical Power & Energy Systems, 2013, vol. 44, no. 1, pp. 375-382. doi: https://doi.org/10.1016/j.ijepes.2011.06.038.
Poitiers F. Etude et commande de génératrices asynchrones pour l'utilisation de l'énergie éolienne-machine asynchrone à cage autonome-machine asynchrone à double alimentation reliée au réseau. PhD Dissertation, Université de Nantes, 2003. (Fra).
Bekakra Y., Ben Attous D. Sliding mode controls of active and reactive power of a DFIG with MPPT for variable speed wind energy conversion. Australian Journal of Basic and Applied Sciences, 2011, vol. 5, no. 12, pp. 2274-2286. Available at: http://www.ajbasweb.com/old/ajbas/2011/December-2011/2274-2286.pdf (Accessed 11 May 2021).
Jerbi L., Krichen L., Ouali A. A fuzzy logic supervisor for active and reactive power control of a variable speed wind energy conversion system associated to a flywheel storage system. Electric Power Systems Research, 2009, vol. 79, no. 6, pp. 919-925. doi: https://doi.org/10.1016/j.epsr.2008.12.006.
Gaillard A., Poure P., Saadate S., Machmoum M. Variable speed DFIG wind energy system for power generation and harmonic current mitigation. Renewable Energy, 2009, vol. 34, no. 6, pp. 1545-1553. doi: https://doi.org/10.1016/j.renene.2008.11.002.
El Aimani S. Modélisation des différentes technologies d'éoliennes intégrées dans un réseau de moyenne tension. PhD Dissertation, Ecole Centrale de Lille, 2004. (Fra).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 A. Boumassata, D. Kerdoun, O. Oualah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.