Optimization of accurate estimation of single diode solar photovoltaic parameters and extraction of maximum power point under different conditions
DOI:
https://doi.org/10.20998/2074-272X.2021.6.07Keywords:
maximum power point, maximum power point error, genetic algorithm, flower pollination algorithmAbstract
Introduction. With the snowballing requirement of renewable resources of energy, solar energy has been an area of key concern to the increasing demand for electricity. Solar photovoltaic has gotten a considerable amount of consideration from researchers in recent years. Purpose. For generating nearly realistic curves for the solar cell model it is needed to estimate unknown parameters with utmost precision. The five unknown parameters include diode-ideality factor, shunt-resistance, photon-current, diode dark saturation current, and series-resistance. Novelty. The proposed research method hybridizes flower pollination algorithm with least square method to better estimate the unknown parameters, and produce more realistic curves. Methodology. The proposed method shows many promising results that are more realistic in nature, as compared to other methods. Shunt-resistance and series-resistance are considered and diode constant is not neglected in this approach that previously has been in practice. The values of series-resistance and diode-ideality factor are found using flower pollination algorithm while shunt-resistance, diode dark saturation current and photon-current are found through least square method. Results. The combination of these techniques has achieved better results compared to other techniques. The simulation studies are carried on MATLAB/Simulink.
References
Ullah M.F., Hanif A. Power quality improvement in distribution system using distribution static compensator with super twisting sliding mode control. International Transactions on Electrical Energy Systems, 2021, vol. 31, no. 9, art. no. e12997 doi: https://doi.org/10.1002/2050-7038.12997.
Anwar N., Hanif A.H., Khan H.F., Ullah M.F. Transient stability analysis of the IEEE-9 bus system under multiple contingencies. Engineering, Technology & Applied Science Research, 2020, vol. 10, no. 4, pp. 5925-5932. doi: https://doi.org/10.48084/etasr.3273.
Mehdi M.F., Ahmad A., Ul Haq S.S., Saqib M., Ullah M.F. Dynamic economic emission dispatch using whale optimization algorithm for multi-objective function. Electrical Engineering & Electromechanics, 2021, no. 2, pp. 64-69. doi: https://doi.org/10.20998/2074-272x.2021.2.09.
Ahmed W., Sheikh J.A., Ahmad S., Farjana S.H., Mahmud M.A.P. Impact of PV system orientation angle accuracy on greenhouse gases mitigation. Case Studies in Thermal Engineering, 2021, vol. 23, p. 100815. doi: https://doi.org/10.1016/j.csite.2020.100815.
Ahmed W., Sheikh J.A., Kouzani A.Z., Mahmud M.A.P. The Role of single end-users and producers on GHG mitigation in Pakistan – a case study. Sustainability, 2020, vol. 12, no. 20, p. 8351. doi: https://doi.org/10.3390/su12208351.
Shongwe S., Hanif M. Comparative analysis of different single-diode PV modeling methods. IEEE Journal of Photovoltaics, 2015, vol. 5, no. 3, pp. 938-946. doi: https://doi.org/10.1109/jphotov.2015.2395137.
Sarquis Filho E.A., Fernandes C.A.F., Da Costa Branco P.J. A complete framework for the simulation of photovoltaic arrays under mismatch conditions. Solar Energy, 2021, vol. 213, pp. 13-26. doi: https://doi.org/10.1016/j.solener.2020.10.055.
Appelbaum J., Peled A. Parameters extraction of solar cells – a comparative examination of three methods. Solar Energy Materials and Solar Cells, 2014, vol. 122, pp. 164-173. doi: https://doi.org/10.1016/j.solmat.2013.11.011.
Yetayew T.T., Jyothsna T.R. Parameter extraction of photovoltaic modules using Newton Raphson and simulated annealing techniques. 2015 IEEE Power, Communication and Information Technology Conference (PCITC), 2015, pp. 229-234. doi: https://doi.org/10.1109/pcitc.2015.7438166.
Shongwe S., Hanif M. Gauss-Seidel iteration based parameter estimation for a single diode model of a PV module. 2015 IEEE Electrical Power and Energy Conference (EPEC), 2015, pp. 278-284. doi: https://doi.org/10.1109/EPEC.2015.7379963.
Chatterjee A., Keyhani A., Kapoor D. Identification of photovoltaic source models. IEEE Transactions on Energy Conversion, 2011, vol. 26, no. 3, pp. 883-889. doi: https://doi.org/10.1109/TEC.2011.2159268.
Uoya M., Koizumi H. A calculation method of photovoltaic array's operating point for MPPT evaluation based on one-dimensional Newton–Raphson method. IEEE Transactions on Industry Applications, 2015, vol. 51, no. 1, pp. 567-575. doi: https://doi.org/10.1109/tia.2014.2326083.
Accarino J., Petrone G., Ramos-Paja C.A., Spagnuolo G. Symbolic algebra for the calculation of the series and parallel resistances in PV module model. 2013 International Conference on Clean Electrical Power (ICCEP), 2013, pp. 62-66. doi: https://doi.org/10.1109/ICCEP.2013.6586967.
Huang P., Xiao W., Peng J.C.-H., Kirtley J.L. Comprehensive parameterization of solar cell: improved accuracy with simulation efficiency. IEEE Transactions on Industrial Electronics, 2016, vol. 63, no. 3, pp. 1549-1560. doi: https://doi.org/10.1109/TIE.2015.2498139.
Shahzad A., Lee M., Lee Y.-K., Kim S., Xiong N., Choi J.-Y., Cho Y. Real time MODBUS transmissions and cryptography security designs and enhancements of protocol sensitive information. Symmetry, 2015, vol. 7, no. 3, pp. 1176-1210. doi: https://doi.org/10.3390/sym7031176.
Zhang Q., Zhou C., Xiong N., Qin Y., Li X., Huang S. Multimodel-based incident prediction and risk assessment in dynamic cybersecurity protection for industrial control systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, vol. 46, no. 10, pp. 1429-1444. doi: https://doi.org/10.1109/TSMC.2015.2503399.
Huang K., Zhang Q., Zhou C., Xiong N., Qin Y. An efficient intrusion detection approach for visual sensor networks based on traffic pattern learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, vol. 47, no. 10, pp. 2704-2713. doi: https://doi.org/10.1109/TSMC.2017.2698457.
Zagrouba M., Sellami A., Bouaïcha M., Ksouri M. Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction. Solar Energy, 2010, vol. 84, no. 5, pp. 860-866. doi: https://doi.org/10.1016/j.solener.2010.02.012.
Ye M., Wang X., Xu Y. Parameter extraction of solar cells using particle swarm optimization. Journal of Applied Physics, 2009, vol. 105, no. 9, p. 094502. doi: https://doi.org/10.1063/1.3122082.
Khanna V., Das B.K., Bisht D., Vandana, Singh P.K. A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm. Renewable Energy, 2015, vol. 78, pp. 105-113. doi: https://doi.org/10.1016/j.renene.2014.12.072.
El-Naggar K.M., AlRashidi M.R., AlHajri M.F., Al-Othman A.K. Simulated Annealing algorithm for photovoltaic parameters identification. Solar Energy, 2012, vol. 86, no. 1, pp. 266-274. doi: https://doi.org/10.1016/j.solener.2011.09.032.
Jiang L.L., Maskell D.L., Patra J.C. Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm. Applied Energy, 2013, vol. 112, pp. 185-193. doi: https://doi.org/10.1016/j.apenergy.2013.06.004.
Patel S.J., Panchal A.K., Kheraj V. Extraction of solar cell parameters from a single current–voltage characteristic using teaching learning based optimization algorithm. Applied Energy, 2014, vol. 119, pp. 384-393. doi: https://doi.org/10.1016/j.apenergy.2014.01.027.
Celik A.N., Acikgoz N. Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models. Applied Energy, 2007, vol. 84, no. 1, pp. 1-15. doi: https://doi.org/10.1016/j.apenergy.2006.04.007.
Vijayakumari A., Devarajan A.T., Devarajan N. Design and development of a model-based hardware simulator for photovoltaic array. International Journal of Electrical Power & Energy Systems, 2012, vol. 43, no. 1, pp. 40-46. doi: https://doi.org/10.1016/j.ijepes.2012.04.049.
Tan Y.T., Kirschen D.S., Jenkins N. A model of PV generation suitable for stability analysis. IEEE Transactions on Energy Conversion, 2004, vol. 19, no. 4, pp. 748-755. doi: https://doi.org/10.1109/tec.2004.827707.
Benavides N.D., Chapman P.L. Modeling the effect of voltage ripple on the power output of photovoltaic modules. IEEE Transactions on Industrial Electronics, 2008, vol. 55, no. 7, pp. 2638-2643. doi: https://doi.org/10.1109/TIE.2008.921442.
Bharadwaj P., Chaudhury K.N., John V. Sequential optimization for PV panel parameter estimation. IEEE Journal of Photovoltaics, 2016, vol. 6, no. 5, pp. 1261-1268. doi: https://doi.org/10.1109/JPHOTOV.2016.2574128.
De Soto W., Klein S.A., Beckman W.A. Improvement and validation of a model for photovoltaic array performance. Solar Energy, 2006, vol. 80, no. 1, pp. 78-88. doi: http://dx.doi.org/10.1016/j.solener.2005.06.010.
Xiao W., Edwin F.F., Spagnuolo G., Jatskevich J. Efficient approaches for modeling and simulating photovoltaic power systems. IEEE Journal of Photovoltaics, 2013, vol. 3, no. 1, pp. 500-508. doi: https://doi.org/10.1109/JPHOTOV.2012.2226435.
Silva E.A., Bradaschia F., Cavalcanti M.C., Nascimento A.J. Parameter estimation method to improve the accuracy of photovoltaic electrical model. IEEE Journal of Photovoltaics, 2016, vol. 6, no. 1, pp. 278-285. doi: https://doi.org/10.1109/JPHOTOV.2015.2483369.
Yang X.-S. Flower Pollination Algorithm for Global Optimization. In: Durand-Lose J., Jonoska N. (eds) Unconventional Computation and Natural Computation. UCNC 2012. Lecture Notes in Computer Science, vol. 7445. Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/978-3-642-32894-7_27.
Nayak B.K., Mohapatra A., Mohanty K.B. Parameters estimation of photovoltaic module using nonlinear least square algorithm: A comparative study. 2013 Annual IEEE India Conference (INDICON), 2013, pp. 1-6. doi: https://doi.org/10.1109/INDCON.2013.6726120.
Tong N.T., Pora W. A parameter extraction technique exploiting intrinsic properties of solar cells. Applied Energy, 2016, vol. 176, pp. 104-115. doi: https://doi.org/10.1016/j.apenergy.2016.05.064.
Zain-Ul-Abdin, Mahmood T., Shorfuzzaman M., Xiong N.N., Mehmood R.M. Aiding prosumers by solar cell parameter optimization using a hybrid technique for achieving near realistic P-V characteristics. IEEE Access, 2020, vol. 8, pp. 225416-225423. doi: https://doi.org/10.1109/ACCESS.2020.3043941.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 F. Akbar, T. Mehmood, K. Sadiq, M.F. Ullah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.