New application of artificial neural network-based direct power control for permanent magnet synchronous generator

Authors

DOI:

https://doi.org/10.20998/2074-272X.2021.6.03

Keywords:

artificial neural network, direct power control, permanent magnet synchronous generator, direct power control based on the use of artificial neural networks

Abstract

Purpose. This article proposes a new strategy for Direct Power Control (DPC) based on the use of Artificial Neural Networks (ANN-DPC). The proposed ANN-DPC scheme is based on the replacement of PI and hysteresis regulators by neural regulators. Simulation results for a 1 kW system are provided to demonstrate the efficiency and robustness of the proposed control strategy during variations in active and reactive power and in DC bus voltage. Methodology. Our strategy is based on direct control of instant active and reactive powers. The voltage regulator and hysteresis are replaced by more efficient and robust artificial neuron networks. The proposed control technique strategy is validated using MATLAB / Simulink software to analysis the working performances. Results. The results obtained clearly show that neuronal regulators have good dynamic performances compared to conventional regulators (minimum response time, without overshoots). Originality. Regulation of continuous bus voltage and sinusoidal currents on the network side by using artificial neuron networks. Practical value. The work concerns the comparative study and the application of DPC based on ANN techniques to achieve a good performance control system of the permanent magnet synchronous generator. This article presents a comparative study between the conventional DPC control and the ANN-DPC control. The first strategy based on the use of a PI controller for the control of the continuous bus voltage and hysteresis regulators for the instantaneous powers control. In the second technique, the PI and hysteresis regulators are replaced by more efficient neuronal controllers more robust for the system parameters variation. The study is validated by the simulation results based on MATLAB / Simulink software.

Author Biographies

K. Akkouchi, University of Constantine 1

PhD, Electrical Engineering Laboratory of Constantine (LGEC), Department of Electrical Engineering

L. Rahmani, University of Ferhat Abbes Setif

Professor of Electrical Engineering, Automatic Laboratory of Setif (LAS)

R. Lebied, University 20 August 1955

PhD, Electrotechnical Laboratory Skikda (LES)

References

Ghouizil A., Achour D., Benbouhenni H. Etude comparative entre la commande DPC, DPC-HYN et DPC-RNA de la GSAP. Journal of Advanced Research in Science and Technology, 2018, vol. 5, no. 2, pp. 735-752. (Fra). Available at: https://www.asjp.cerist.dz/en/downArticle/112/5/2/59632 (accessed 15 May 2021).

Multon B. Historique des machines électriques et plus particulièrement des machines à réluctance variable. La Revue 3 E. I, Société de l’électricité, de l’électronique et des technologies de l’information et de la communication, 1995, pp. 3-8. (Fra). Available at: https://hal.archives-ouvertes.fr/hal-00674038/document (accessed 15 May 2021).

Hemieda A.M., Farag W.A., Maghoub O.A. Modeling and control of direct driven PMSG for ultra large wind turbines. World Academy of Science, Engineering and Technology, 2011, vol. 59, pp. 918-924. Available at: https://scholar.cu.edu.eg/sites/default/files/wael_farag/files/modeling_and_control_of_direct_driven_pmsg_for_ultra_large_wind_turbines.pdf (accessed 15 May 2021).

Allagui M., Hasnaoui O.B.K., Belhadj J. A 2 MW direct drive wind turbine; vector control and direct torque control techniques comparison. Journal of Energy in Southern Africa, 2014, vol. 25, no. 2, pp. 117-126. doi: https://doi.org/10.17159/2413-3051/2014/v25i2a2679.

Errami Y., Ouassaid M., Cherkaoui M., Maaroufi M. Variable structure sliding mode control and direct torque control of wind power generation system based on the PM synchronous generator. Journal of Electrical Engineering, 2015, vol. 66, no. 3, pp. 121-131. doi: https://doi.org/10.2478/jee-2015-0020.

Freire N,. Estima J., Cardoso A. A comparative analysis of PMSG drives based on vector control and direct control techniques for wind turbine applications, Przeglad Elektrotechniczny, 2012, vol. 88, no. 1a, pp. 184-187. Available at: http://pe.org.pl/articles/2012/1a/39.pdf (accessed 15 May 2021).

Merzoug M.S., Benall H., Louze L. Sliding Mode Control (SMC) Of Permanent Magnet Synchronous Generators (PMSG). Energy Procedia, 2012, vol. 18, pp. 43-52. doi: https://doi.org/10.1016/j.egypro.2012.05.016.

Mendis N., Muttaqi K.M., Perera S. Management of battery-supercapacitor hybrid energy storage and synchronous condenser for isolated operation of PMSG based variable-speed wind turbine generating systems. IEEE Transactions on Smart Grid, 2014, vol. 5, no. 2, pp. 944-953. doi: https://doi.org/10.1109/tsg.2013.2287874.

Gehlot N.S., Alsina P.J. A comparison of control strategies of robotic manipulators using neural networks. Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation, 1992, vol. 2, pp. 688-693. doi: https://doi.org/10.1109/IECON.1992.254549.

Mavrovouniotis M.L., Chang S. Numerical recipes in C. New York, Cambridge University Press, 1990.

Ozdamar O., Yaylali I., Jayaker P., Lopez C.N. Inversion of multilayer networks. Int. Joint. Conf. Neural Networks, Washington, June 1989, pp. 425-430.

Narendra K.S., Mukhopadhyay S. Intelligent control using neural networks. IEEE Control Systems Magazine, 1992, vol. 12, no. 2, pp. 11-18. doi: https://doi.org/10.1109/37.126848.

Watrous R.L. Learning algorithms for connectionist networks: applied gradien methods of nonlinear optimization. International Journal of Power Electronics and Drive System, 1988, vol. 8,no. 4, pp. 619-627.

Hassan Adel A., Abo-Zaid S., Refky A. Improvement of direct torque control of induction motor drives using neuro-fuzzy controller. Journal of Multidisciplinary Engineering Science and Technology, 2015, vol. 2, no. 10, pp. 2913-2918. Available at: https://www.jmest.org/wp-content/uploads/JMESTN42351145.pdf (accessed 5 May 2021).

Seyoum D., Rahman M.F., Grantham C. Terminal voltage control of a wind turbine driven isolated induction generator using stator oriented field control. Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2003. APEC '03, pp. 846-852 vol. 2. doi: https://doi.org/10.1109/apec.2003.1179315.

Halvaei Niasar A., Rahimi Khoei H. Sensorless Direct Power Control of Induction Motor Drive Using Artificial Neural Network. Advances in Artificial Neural Systems, 2015, vol. 2015, pp. 1-9. doi: https://doi.org/10.1155/2015/318589.

Benbouhenni H., Boudjema Z. Comparative study between neural hysteresis, fuzzy PI, and neural switching table for an IM DTC control. International journal of fuzzy systems and advanced applications, 2018, vol. 5, pp. 23-34. Available at: http://www.naun.org/main/NAUN/fuzzy/2018/a082017-063.pdf (accessed 15 May 2021).

Benbouhenni H. Robust direct power control of a DFIG fed by a five- level NPC inverter using neural SVPWM technique. TECNICA ITALIANA-Italian Journal of Engineering Science, 2021, vol. 65, no. 1, pp. 119-128. doi: https://doi.org/10.18280/ti-ijes.650118.

Jayachandra B., Mahesh A. ANN Based Direct Power Control of 2-level PWM Rectifier. 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC), 2018, pp. 623-627. doi: https://doi.org/10.1109/peeic.2018.8665617.

Andreoli de Marchi R., Sergio Dainez P., Von Zuben F.J., Bim E. A neural network controller for the direct power control of doubly fed induction generator. Eletrônica de Potência, 2013, vol. 18, no. 3, pp. 1038-1046. doi: https://doi.org/10.18618/rep.2013.3.10381046.

Boukhechem I., Boukadoum A., Boukelkoul L., Lebied R. Sensorless direct power control for three-phase grid side converter integrated into wind turbine system under disturbed grid voltages. Electrical Engineering & Electromechanics, 2020, no. 3, pp. 48-57. doi: https://doi.org/10.20998/2074-272x.2020.3.08.

Lebied R., Lalalou R., Benalla H., Nebti K., Boukhechem I. Ameliorate direct power control of standalone wind energy generation system based on permanent magnet synchronous generator by using fuzzy logic control. Electrical Engineering & Electromechanics, 2020, no. 6, pp. 63-70. doi: https://doi.org/10.20998/2074-272X.2020.6.09.

Djeriri Y., Meroufel A., Massoum A., Boudjema Z. Direct power control of a doubly fed induction generator based wind energy conversion systems including a storage unit. Journal of Electrical Engineering, 2014, vol. 14 , no. 1, pp. 196-203.

Noguchi T., Tomiki H., Kondo S., Takahashi I. Direct power control of PWM converter without power-source voltage sensors. IEEE Transactions on Industry Applications, 1998, vol. 34, no. 3, pp. 473-479. doi: https://doi.org/10.1109/28.673716.

Zolfaghar M., Taher S.A., Munuz D.V. Neural network-based sensorless direct power control of permanent magnet synchronous motor. Ain Shams Engineering Journal, 2016, vol. 7, no. 2, pp. 729-740. doi: https://doi.org/10.1016/j.asej.2016.01.002.

Micu D.D., Czumbil L., Christoforidis G., Simion E. Neural networks applied in electromagnetic interference problems, Revue roumaine des sciences techniques. Série Électrotechnique et Énergétique, 2012, vol. 57, no. 2, pp. 162-171. Available at: http://revue.elth.pub.ro/viewpdf.php?id=338 (accessed 15 May 2021).

Downloads

Published

2021-12-03

How to Cite

Akkouchi, K., Rahmani, L., & Lebied, R. (2021). New application of artificial neural network-based direct power control for permanent magnet synchronous generator. Electrical Engineering & Electromechanics, (6), 18–24. https://doi.org/10.20998/2074-272X.2021.6.03

Issue

Section

Electrotechnical complexes and Systems