Expansion of cylindrical tubular workpieces on high-voltage magnetic-pulse installation with controlled vacuum discharger

Authors

DOI:

https://doi.org/10.20998/2074-272X.2021.3.07

Keywords:

high-voltage magnetic-pulse installations, capacitive energy storage, controlled vacuum discharger, current pulse «cut», probability of «cut», external coil, expansion of cylindrical tubular workpiece, part of complicated shape

Abstract

Purpose. An experimental verification of the existence of a range of values for the parameters of the capacitive energy storage of the magnetic-pulse installations with controlled vacuum discharger, in which, with a high probability, there is a «cut» of the discharge current pulses and the expansion of cylindrical thin-walled tubular workpieces using an external coil. Methodology. High voltage magnetic-pulse installation of NTU «KhPI» with controlled vacuum discharger, multiturn coil with inside dielectrical die and inside aluminum alloy workpiece are used. The capacitance and charge voltage of capacitive energy storage are changed. Discharge current pulses are measured by Rogowski coil and the oscillograph. Results. Parts of complicated shape are made by expansion of cylindrical tubular workpieces with help of external coil. Pressed metallic tubular part is removable from inner dielectric rod. Originality. The frequency of «cut» pulse is defined by negative magnetic field pressure amplitude. It is shown that we must coordinate this frequency and charge voltage with capacitive storage parameters by high probability of pulse «cut». Practical value. It is shown how to use installations with controlled vacuum dischargers in magnetic forming technology based on «cut» pulses.

Author Biographies

L. A. Ljutenko, National Technical University «Kharkiv Polytechnic Institute», Ukraine

Postgraduate Student

V. M. Mikhailov, National Technical University «Kharkiv Polytechnic Institute», Ukraine

Doctor of Technical Science, Professor

References

Bely I.V., Fertik S.M., Khimenko L.T. Spravochnik po magnitno-impulsnoj obrabotke metallov [Handbook on magnetic-pulse processing of metals]. Kharkiv, Vishcha shkola Publ., 1977, 168 p. (Rus).

Psyk V., Risch D., Kinsey B.L., Tekkaya A.E., Kleiner M. Electromagnetic forming – A review. Journal of Materials Processing Technology, 2011, vol. 211, no. 5, pp. 787-829. doi: https://doi.org/10.1016/j.jmatprotec.2010.12.012.

Qiu L., Yu Y., Yang Y., Nie X., Xiao Y., Ning Y., Wang F., Cao C. Analysis of electromagnetic force and experiments in electromagnetic forming with local loading. International Journal of Applied Electromagnetics and Mechanics, 2018, vol. 57, no. 1, pp. 29-37. doi: https://doi.org/10.3233/jae-170038.

Zhang X., Li C., Wang X., Zhao Y., Li L. Improvement of deformation behavior of tube in electromagnetic forming with a triple-coil system. International Journal of Applied Electromagnetics and Mechanics, 2019, vol. 61, no. 2, pp. 263-272. doi: https://doi.org/10.3233/jae-180122.

Prokofiev A.B., Beliaeva I.A., Glushchenkov V.A., Karpukhin V.F., Chernikov D.G., Iusupov R.Iu. Magnitno-impul'snaia obrabotka materialov [Magnetic-pulse processing of materials]. Samara, SNTs Publ., 2019. 140 p, Available at: http://repo.ssau.ru/handle/Monografii/Magnitnoimpulsnaya-obrabotka-materialov-MIOM-Elektronnyi-resurs-monografiya-81514 (accessed 15 May 2020). (Rus).

Li X., Cao Q., Lai Z., Ouyang S., Liu N., Li M., Han X., Li L. Bulging behavior of metallic tubes during the electromagnetic forming process in the presence of a background magnetic field. Journal of Materials Processing Technology, 2020, vol. 276, p. 116411. doi: https://doi.org/10.1016/j.jmatprotec.2019.116411.

Xiong Q., Yang M., Tang H., Huang H., Song X., Qiu L., Yu K., Cao Q. Flaring Forming of Small Tube Based on Electromagnetic Attraction. IEEE Access, 2020, vol. 8, pp. 104753-104761. doi: https://doi.org/10.1109/access.2020.2999125.

Chernikov D.G., Glushchenkov V.A., Gusev D.V., Pfetzer I.A., Alyokhina V.K. Evaluation of the efficiency of the process of electromagnetic forming of small-diameter tubes. Izvestiya of Samara Scientific Center of the Russian Academy of Sciences, 2020, vol. 22, no. 4, pp. 21-28. (Rus). doi: https://doi.org/10.37313/1990-5378-2020-22-4-21-28.

Furth Harold P. Devices for metal-forming by magnetic tension. Patent USA no. 3,196,649, July, 27, 1965.

Shcheglov B.A., Esin A.A. Distribution of thin-walled tubular workpieces by the forces of attraction of a pulsed magnetic field. Forging and Stamping Production. Material Working by Pressure, 1971, no. 4, pp. 15-17. (Rus).

Yusupov R.Yu. Magnetic-pulse installations of a new generation for industrial and educational-scientific purposes. Proceedings of the International Scientific and Technical Conference MIOM-2007, 2007, pp. 251-259. (Rus).

Bondina N.N., Konovalov O. Ya., Legeza A.V., Makeev V.G., Mikhailov V.M., Shovkoplyas A.V. Magnetic-pulse expansion of a cylindrical conducting shell and creation of a given distribution fields using an external inductor. Technical electrodynamics. Thematic issue «Problems of modern electrical engineering», 2008, chapter 5, pp. 84-89. (Rus).

Ljutenko L.A., Mikhailov V.M. The probability of interruption current pulses in circuit of capacitor bank with vacuum discharger. Technical electrodynamics, 2012, no. 3, pp. 121-122. (Rus).

Ljutenko L.A., Mikhailov V.M. Influence of the shape of an external magnetic field pulse on electrodynamic forces deforming a cylindrical shell. Technical electrodynamics, 2007, no. 6, pp. 15-19. (Rus).

Bondina N.N., Kramchanin E.G., Ljutenko L.A., Mikhailov V.M. Electrodynamic forces acting on a cylindrical shell under oscillating discharge of a magnetic pulse forming machine. Electrical Engineering & Electromechanics, 2007, no. 5, pp. 66-70. (Rus).

Boltachev G.Sh., Volkov N.B., Paranin S.N., Spirin A.V. Dynamics of cylindrical conducting shells in a pulsed longitudinal magnetic field. Technical Physics, 2010, vol. 55, no. 6, pp. 753-761. doi: https://doi.org/10.1134/S1063784210060010.

Neyman L.R., Demirchyan K.S. Teoreticheskie osnovy elektrotechniki. V 2-h tomah. Tom 2 [Theoretical bases of the Electrical Engineering. In 2 vols. Vol. 2]. Leningrad, Energoizdat Publ., 1981. 416 p. (Rus).

Published

2021-06-23

How to Cite

Ljutenko, L. A., & Mikhailov, V. M. (2021). Expansion of cylindrical tubular workpieces on high-voltage magnetic-pulse installation with controlled vacuum discharger. Electrical Engineering & Electromechanics, (3), 42–46. https://doi.org/10.20998/2074-272X.2021.3.07

Issue

Section

Engineering Electrophysics. High Electric and Magnetic Field Engineering