An effective control algorithm for dynamic voltage restorer under symmetrical and asymmetrical grid voltage conditions

Authors

DOI:

https://doi.org/10.20998/2074-272X.2021.4.07

Keywords:

dynamic voltage restorer, power quality, voltage sag, phase locked loop, synchronous reference frame

Abstract

Introduction. Voltage sag, which is associated to a transitory drop in the root mean square voltage characterizing an electrical source network. During these perturbations, the corresponding electronic customers and devices will suffer from serious operating troubles causing dangerous damages. Purpose. In order to attenuate this disturbance effects, the Controlled Dynamic Voltage Restorer constitutes a very interesting solution among many others that have been proposed. The novelty of the proposed work consists in presenting an enhanced algorithm to control efficiently the dynamic voltage restorer when voltage sag is suddenly occurred. Methods. The proposed algorithm is based on an instantaneous phase locked loop using a multi variable filter to synthesize unitary signals involved in compensation voltages computation relative to the sag apparition. Practical value. A detailed study concerning typical voltage sag, which is consolidated by simulation and experimental results, is conducted to show the used algorithm’s effectiveness to cancel the corresponding voltage sag.

Author Biographies

A. Boussaid, University Frères Mentouri Constantine 1, Algeria

Doctor of Electrical Engineering, Professor, Laboratoire d’électrotechnique de Constantine, Institut des Sciences et des Techniques Appliquées

S.E.I. Chelli, University Frères Mentouri Constantine 1, Algeria

PhD Student, Laboratoire d’électrotechnique de Constantine

A.L. Nemmour, University Frères Mentouri Constantine 1, Algeria

Doctor of Electrical Engineering, Professor, Laboratoire d’électrotechnique de Constantine

A. Khezzar, University Frères Mentouri Constantine 1, Algeria

Doctor of Electrical Engineering, Professor, Laboratoire d’électrotechnique de Constantine

References

Patel A., Mathur H.D., Bhanot S. An improved control method for unified power quality conditioner with unbalanced load. International Journal of Electrical Power & Energy Systems, 2018, vol. 100, pp. 129-138. doi: https://doi.org/10.1016/j.ijepes.2018.02.035.

Pelz G.M., da Silva S.A.O., Sampaio L.P. Comparative analysis involving PI and state-feedback multi-resonant controllers applied to the grid voltage disturbances rejection of a unified power quality conditioner. International Journal of Electrical Power & Energy Systems, 2020, vol. 115, p. 105481. doi: https://doi.org/10.1016/j.ijepes.2019.105481.

Yazdi F., Hosseinian S.H. A novel “Smart Branch” for power quality improvement in microgrids. International Journal of Electrical Power & Energy Systems, 2019, vol. 110, p. 161-170. doi: https://doi.org/10.1016/j.ijepes.2019.02.026.

Krylov D.S., Kholod O.I. The efficiency of the active controlled rectifier operation in the mains voltage distortion mode. Electrical Engineering & Electromechanics, 2021, no. 2, pp. 30-35. doi: https://doi.org/10.20998/2074-272x.2021.2.05.

Philip M.A.D., Kareem P.F.A. Power conditioning using DVR under symmetrical and unsymmetrical fault conditions. European Journal of Electrical Engineering, 2020, vol. 22, no. 2, pp. 179-191. doi: https://doi.org/10.18280/ejee.220212.

Gongati P.R.R., Marala R.R., Malupu V.K.. Mitigation of certain power quality issues in wind energy conversion system using UPQC and IUPQC devices. European Journal of Electrical Engineering, 2020, vol. 22, no. 6, pp. 447-455. doi: https://doi.org/10.18280/ejee.220606.

Das C.K., Bass O., Kothapalli G., Mahmoud T.S., Habibi D. Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality. Renewable and Sustainable Energy Reviews, 2018, vol. 91, pp. 1205-1230. doi: https://doi.org/10.1016/j.rser.2018.03.068.

Syvokobylenko V.F., Lysenko V.A. Improving the efficiency of fault protection systems of electrical grids based on zero sequence voltages and currents wavelet transforms. Electrical Engineering & Electromechanics, 2020, no. 4, pp. 67-72. doi: https://doi.org/10.20998/2074-272X.2020.4.09.

Boukhechem I., Boukadoum A., Boukelkoul L., Lebied R. Sensorless direct power control for three-phase grid side converter integrated into wind turbine system under disturbed grid voltages. Electrical Engineering & Electromechanics, 2020, no. 3, pp. 48-57. doi: https://doi.org/10.20998/2074-272X.2020.3.08.

Hossain E., Tür M.R., Padmanaban S., Ay S., Khan I. Analysis and mitigation of power quality issues in distributed generation systems using custom power devices. IEEE Access, 2018, vol. 6, pp. 16816-16833. doi: https://doi.org/10.1109/access.2018.2814981.

Deng Y., Jia H., Tong X., Dai Z., Qiu X., Wang L. Voltage sag identification based on deep learning method with gated recurrent unit. 2020 Chinese Automation Congress (CAC), 2020, pp. 1113-1117. doi: https://doi.org/10.1109/cac51589.2020.9327836.

Tu C., Guo Q., Jiang F., Chen C., Li X., Xiao F., Gao J. Dynamic voltage restorer with an improved strategy to voltage sag compensation and energy self-recovery. CPSS Transactions on Power Electronics and Applications, 2019, vol. 4, no. 3, pp. 219-229. doi: https://doi.org/10.24295/cpsstpea.2019.00021.

Li P., Xie L., Han J., Pang S., Li P. A New Voltage Compensation Philosophy for Dynamic Voltage Restorer to Mitigate Voltage Sags Using Three-Phase Voltage Ellipse Parameters. IEEE Transactions on Power Electronics, 2018, vol. 33, no. 2, pp. 1154-1166. doi: https://doi.org/10.1109/tpel.2017.2676681.

Han Y., Feng Y., Yang P., Xu L., Xu Y., Blaabjerg F. Cause, classification of voltage sag, and voltage sag emulators and applications: a comprehensive overview. IEEE Access, 2020, vol. 8, pp. 1922-1934. doi: https://doi.org/10.1109/access.2019.2958965.

Singh S., Letha S.S. Various custom power devices for power quality improvement: a review. 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC), 2018, pp. 689-695. doi: https://doi.org/10.1109/PEEIC.2018.8665470.

Bhosale S.S., Bhosale Y.N., Chavan U.M., Malvekar S.A. Power quality improvement by using UPQC: a review. 2018 International Conference on Control, Power, Communication and Computing Technologies (ICCPCCT), 2018, pp. 375-380. doi: https://doi.org/10.1109/ICCPCCT.2018.8574264.

Karelia N., Sant A.V., Pandya V. Comparison of UPQC topologies for power quality enhancement in grid integrated renewable energy sources. 2019 IEEE 16th India Council International Conference (INDICON), 2019, pp. 1-4. doi: https://doi.org/10.1109/indicon47234.2019.9029108.

Gowtham N., Shankar S. UPQC: a custom power device for power quality improvement. Materials Today: Proceedings, 2018, vol. 5, no. 1, pp. 965-972. doi: https://doi.org/10.1016/j.matpr.2017.11.172.

Jin T., Chen Y., Guo J., Wang M., Mohamed M.A. An effective compensation control strategy for power quality enhancement of unified power quality conditioner. Energy Reports, 2020, vol. 6, p. 2167-2179. doi: https://doi.org/10.1016/j.egyr.2020.07.027.

Tooski P.Y., Eskandari B., Azizi M.R. Three-phase four-wire compensator in distribution system; Detailed simulation for implementation. 2018 9th Annual Power Electronics, Drives Systems and Technologies Conference (PEDSTC), 2018, pp. 206-211. doi: https://doi.org/10.1109/pedstc.2018.8343797.

Liu J., Xu W., Chan K.W., Liu M., Zhang X., Chan N.H.L. A three-phase single-stage AC–DC wireless-power-transfer converter with power factor correction and bus voltage control. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, vol. 8, no. 2, pp. 1782-1800. doi: https://doi.org/10.1109/JESTPE.2019.2916258.

Aboelsaud R., Ibrahim A., Garganeev A.G. Review of three-phase inverters control for unbalanced load compensation. International Journal of Power Electronics and Drive Systems (IJPEDS), 2019, vol. 10, no. 1, p. 242. doi: https://doi.org/10.11591/ijpeds.v10.i1.pp242-255.

Sarkar M.N.I., Meegahapola L.G., Datta M. Reactive power management in renewable rich power grids: a review of grid-codes, renewable generators, support devices, control strategies and optimization algorithms. IEEE Access, 2018, vol. 6, pp. 41458-41489. doi: https://doi.org/10.1109/access.2018.2838563.

Singh S.P., Bhat A.H. Design and performance evaluation of self-supported dynamic voltage restorer for mitigating various power quality problems. International Journal of Power Electronics, 2020, vol. 12, no 1, p. 54-84. doi: https://doi.org/10.1504/IJPELEC.2020.108386.

Sivaperumal P., Dash S.S., Saravanan K. Enhancing the power of quality issues using superconducting magnetic storage devices–based dynamic voltage restorer–aided switched coupled inductor inverter with space vector pulse width modulation techniques. Measurement and Control, 2019, vol. 52, no. 9-10, p. 1329-1343. doi: https://doi.org/10.1177/0020294019858169.

Manitha P.V., Nair M.G. Adapted synchronous reference frame based control for a dynamic voltage restorer. 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), 2019, pp. 1-5. doi: https://doi.org/10.1109/i-pact44901.2019.8960020.

Ali Z., Christofides N., Hadjidemetriou L., Kyriakides E., Yang Y., Blaabjerg F. Three-phase phase-locked loop synchronization algorithms for grid-connected renewable energy systems: A review. Renewable and Sustainable Energy Reviews, 2018, vol. 90, pp. 434-452. doi: https://doi.org/10.1016/j.rser.2018.03.086.

Xia T., Zhang X., Tan G., Liu Y. Synchronous reference frame single-phase phase-locked loop (PLL) algorithm based on half-cycle DFT. IET Power Electronics, 2020, vol. 13, no. 9, pp. 1893-1900. doi: https://doi.org/10.1049/iet-pel.2019.1542.

Zou Z.-X., Rosso R., Liserre M. Modeling of the Phase Detector of a Synchronous-Reference-Frame Phase-Locked Loop Based on Second-Order Approximation. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, vol. 8, no. 3, pp. 2534-2545. doi: https://doi.org/10.1109/jestpe.2019.2920309.

Hans F., Schumacher W., Harnefors L. Small-Signal Modeling of Three-Phase Synchronous Reference Frame Phase-Locked Loops. IEEE Transactions on Power Electronics, 2018, vol. 33, no. 7, pp. 5556-5560. doi: https://doi.org/10.1109/tpel.2017.2783189.

Patel S.R., Solanki M.D. Comparision of proportional integral and hysteresis controllers for controlling the DVR. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), May 2018. doi: https://doi.org/10.1109/icoei.2018.8553769.

Hung V.T., Shu H., Giang L.N., The N.D. Double-loop control structure using proportional resonant and sequence-decoupled resonant controllers in static coordinates for dynamic voltage restorer. Chinese Journal of Electrical Engineering, 2019, vol. 5, no. 3, pp. 10-19. doi: https://doi.org/10.23919/cjee.2019.000016.

Sathik Basha A., Ramasamy M. Design of Z-source inverter-based dynamic voltage restorer circuitry with R-SOGI control scheme for enrichment of power quality. Journal of Circuits, Systems and Computers, 2021, p. 2150195. doi: https://doi.org/10.1142/s0218126621501954.

Huchche V.A., Patne N.R., Junghare A.S. Mitigating voltage sags using FOPI and fuzzy logic controllers in induction motors. 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Sep. 2017. doi: https://doi.org/10.1109/icpcsi.2017.8392281.

Zhao J., Mili L. A Decentralized H-Infinity Unscented Kalman Filter for Dynamic State Estimation Against Uncertainties. IEEE Transactions on Smart Grid, 2019, vol. 10, no. 5, pp. 4870-4880. doi: https://doi.org/10.1109/tsg.2018.2870327.

Biricik S., Komurcugil H., Tuyen N.D., Basu M. Protection of sensitive loads using sliding mode controlled three-phase DVR with adaptive notch filter. IEEE Transactions on Industrial Electronics, 2019, vol. 66, no. 7, pp. 5465-5475. doi: https://doi.org/10.1109/tie.2018.2868303.

Komurcugil H., Biricik S., Babaei E. Super Twisting Algorithm Based Sliding Mode Control Method for Single-Phase Dynamic Voltage Restorers. 2019 2nd International Conference on Smart Grid and Renewable Energy (SGRE), 2019, pp. 1-6. doi: https://doi.org/10.1109/sgre46976.2019.9020687.

Biricik S., Komurcugil H., Ahmed H., Babaei E. Super Twisting Sliding Mode Control of DVR with Frequency-Adaptive Brockett Oscillator. IEEE Transactions on Industrial Electronics, 2020. Article in Press. doi: https://doi.org/10.1109/TIE.2020.3038089.

SasiKiran P., Manohar T.G. UKF based estimation approach for DVR control to compensate voltage swell in distribution systems. Ain Shams Engineering Journal, 2018, vol. 9, no. 4, pp. 441-453. doi: https://doi.org/10.1016/j.asej.2016.02.001.

Trabelsi M., Komurcugil H., Refaat S.S., Abu-Rub H. Model predictive control of packed U cells based transformerless single-phase dynamic voltage restorer. 2018 IEEE International Conference on Industrial Technology (ICIT), 2018, pp. 1926-1931. doi: https://doi.org/10.1109/icit.2018.8352480.

Trabelsi M., Vahedi H., Komurcugil H., Abu-Rub H., Al-Haddad K. Low complexity model predictive control of PUC5 based dynamic voltage restorer. 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE), 2018, pp. 240-245. doi: https://doi.org/10.1109/isie.2018.8433616.

Taher S.A., Fard H.T., Kashani E.B. New switching approach for DVR using one cycle control method. Ain Shams Engineering Journal, 2018, vol. 9, no. 4, pp. 2227-2254. doi: https://doi.org/10.1016/j.asej.2017.03.003.

Van T.L., Nguyen N.M.D., Toi L.T., Trang T.T. Advanced control strategy of dynamic voltage restorers for distribution system using sliding mode control input-output feedback linearization. International Conference on Advanced Engineering Theory and Applications. Springer, Cham, 2017. p. 521-531. doi: https://doi.org/10.1007/978-3-319-69814-4_50.

Mythily G., Lakshmi Kumari S.V.R. Power quality improvement by IUPQC. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Jul. 2018. doi: https://doi.org/10.1109/icirca.2018.8597191.

Downloads

Published

2021-07-29

How to Cite

Boussaid, A., Chelli, S., Nemmour, A., & Khezzar, A. (2021). An effective control algorithm for dynamic voltage restorer under symmetrical and asymmetrical grid voltage conditions. Electrical Engineering & Electromechanics, (4), 53–63. https://doi.org/10.20998/2074-272X.2021.4.07

Issue

Section

Power Stations, Grids and Systems