Overhead power lines magnetic field reducing in multi-story building by active shielding means

Автор(и)

DOI:

https://doi.org/10.20998/2074-272X.2021.2.04

Ключові слова:

воздушные линии электропередачи с треугольным расположением фазных проводов, магнитное поле, система активного экранирования, компьютерное моделирование, экспериментальное исследование

Анотація

Цель. Снижение уровня индукции магнитного поля внутри многоэтажного дома, генерируемого одноцепной воздушной линией электропередачи до уровня санитарных норм. Задачами работы являются синтез, компьютерное моделирование и экспериментальные исследования трехконтурной системы активного экранирования, содержащей три экранирующие обмотки. Методология. При синтезе системы определены – количество, конфигурация, пространственное расположение экранирующих обмоток, а также токи в экранирующих обмотках и результирующие значения индукции магнитного поля в пространстве экранирования. Синтез трехконтурной системы активного экранирования основан на решении многокритериальной стохастической игры, в которой векторный выигрыш вычисляется на основании решений уравнений Максвелла в квазистационарном приближении. Решение игры находится на основе алгоритмов стохастической мультиагентной оптимизации мультироем частиц. Результаты. Приводятся результаты компьютерного моделирования и экспериментальных исследований трехконтурной системы активного экранирования магнитного поля внутри многоэтажного дома, генерируемого воздушной линией электропередачи. Показана возможность снижения уровня индукции исходного магнитного поля внутри многоэтажного дома до уровня санитарных норм. Оригинальность. Впервые для снижения уровня индукции магнитного поля внутри многоэтажного дома до уровня санитарных норм, проведены синтез, компьютерное моделирование и экспериментальные исследования трехконтурной системы активного экранирования магнитного поля, генерируемого одноцепной воздушной линией электропередачи с треугольным подвесом проводов. Практическая ценность. Приводятся практические рекомендации по обоснованному выбору, с точки зрения практической реализации, пространственного расположения трех экранирующих обмоток трехконтурной системы активного экранирования магнитного поля, от генерируемого внутри многоэтажного дома магнитного поля одноконтурной воздушной линии электропередачи с треугольным подвесом проводов.

Біографії авторів

B. I. Kuznetsov, State Institution «Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine», Ukraine

Doctor of Technical Science, Professor

T. B. Nikitina, Kharkov National Automobile and Highway University, Ukraine

Doctor of Technical Science, Professor

I. V. Bovdui, State Institution «Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine», Ukraine

PhD, Senior Research Scientist

V. V. Kolomiets, Educational scientific professional pedagogical Institute of Ukrainian Engineering Pedagogical Academy, Ukraine

PhD, Associate Professor

B. B. Kobylianskiy, Educational scientific professional pedagogical Institute of Ukrainian Engineering Pedagogical Academy, Ukraine

PhD, Associate Professor

Посилання

Rozov V.Yu., Grinchenko V.S., Yerisov A.V., Dobrodeyev P.N. Efficient shielding of three-phase cable line magnetic field by passive loop under limited thermal effect on power cables. Electrical Engineering & Electromechanics, 2019, no. 6, pp. 50-54. doi: https://doi.org/10.20998/2074-272x.2019.6.07.

Rozov V., Grinchenko V. Simulation and analysis of power frequency electromagnetic field in buildings closed to overhead lines. 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kyiv, UKraine, 2017, pp. 500-503. doi: https://doi.org/10.1109/ukrcon.2017.8100538.

Rozov V.Yu., Kundius K.D., Pelevin D.Ye. Active shielding of external magnetic field of built-in transformer substations. Electrical Engineering & Electromechanics, 2020, no. 3, pp. 24-30. doi: https://doi.org/10.20998/2074-272x.2020.3.04.

Rozov V.Y., Zavalnyi A.V., Zolotov S.M., Gretskikh S.V. The normalization methods of the static geomagnetic field inside houses. Electrical Engineering & Electromechanics, 2015, no. 2, pp. 35-40. doi: https://doi.org/10.20998/2074-272x.2015.2.07.

Salceanu A., Paulet M., Alistar B.D., Asiminicesei O. Upon the contribution of image currents on the magnetic fields generated by overhead power lines. 2019 International Conference on Electromechanical and Energy Systems (SIELMEN). 2019. doi: https://doi.org/10.1109/sielmen.2019.8905880.

Del Pino Lopez J.C., Romero P.C. Influence of different types of magnetic shields on the thermal behavior and ampacity of underground power cables. IEEE Transactions on Power Delivery, Oct. 2011, vol. 26, no. 4, pp. 2659-2667. doi: https://doi.org/10.1109/tpwrd.2011.2158593.

Ippolito L., Siano P. Using multi-objective optimal power flow for reducing magnetic fields from power lines. Electric Power Systems Research, Feb. 2004, vol. 68, no. 2, pp. 93-101. doi: https://doi.org/10.1016/s0378-7796(03)00151-2.

Barsali S., Giglioli R., Poli D. Active shielding of overhead line magnetic field: Design and applications. Electric Power Systems Research, May 2014, vol. 110, pp. 55-63. doi: https://doi.org/10.1016/j.epsr.2014.01.005.

Bavastro D., Canova A., Freschi F., Giaccone L., Manca M. Magnetic field mitigation at power frequency: design principles and case studies. IEEE Transactions on Industry Applications, May 2015, vol. 51, no. 3, pp. 2009-2016. doi: https://doi.org/10.1109/tia.2014.2369813.

Beltran H., Fuster V., García M. Magnetic field reduction screening system for a magnetic field source used in industrial applications. 9 Congreso Hispano Luso de Ingeniería Eléctrica (9 CHLIE), Marbella (Málaga, Spain), 2005, pр. 84-99. Available at: https://www.researchgate.net/publication/229020921_Magnetic_field_reduction_screening_system_for_a_magnetic_field_source_used_in_industrial_applications (Accessed 28.10.2020).

Bravo-Rodríguez J., Del-Pino-López J., Cruz-Romero P. A Survey on Optimization Techniques Applied to Magnetic Field Mitigation in Power Systems. Energies, 2019, vol. 12, no. 7, p. 1332. doi: https://doi.org/10.3390/en12071332.

Canova A., del-Pino-López J.C., Giaccone L., Manca M. Active Shielding System for ELF Magnetic Fields. IEEE Transactions on Magnetics, March 2015, vol. 51, no. 3, pp. 1-4. doi: https://doi.org/10.1109/tmag.2014.2354515.

Canova A., Giaccone L. Real-time optimization of active loops for the magnetic field minimization. International Journal of Applied Electromagnetics and Mechanics, Feb. 2018, vol. 56, pp. 97-106. doi: https://doi.org/10.3233/jae-172286.

Canova A., Giaccone L., Cirimele V. Active and passive shield for aerial power lines. Proc. of the 25th International Conference on Electricity Distribution (CIRED 2019), 3-6 June 2019, Madrid, Spain. Paper no. 1096. Available at: https://www.cired-repository.org/handle/20.500.12455/290 (Accessed 28.10.2020).

Canova A., Giaccone L. High-performance magnetic shielding solution for extremely low frequency (ELF) sources. CIRED - Open Access Proceedings Journal, Oct. 2017, vol. 2017, no. 1, pp. 686-690. doi: https://doi.org/10.1049/oap-cired.2017.1029.

Celozzi S. Active compensation and partial shields for the power-frequency magnetic field reduction. 2002 IEEE International Symposium on Electromagnetic Compatibility, Minneapolis, MN, USA, 2002, vol. 1, pp. 222-226. doi: https://doi.org/10.1109/isemc.2002.1032478.

Celozzi S., Garzia F. Active shielding for power-frequency magnetic field reduction using genetic algorithms optimization. IEE Proceedings - Science, Measurement and Technology, 2004, vol. 151, no. 1, pp. 2-7. doi: https://doi.org/10.1049/ip-smt:20040002.

Celozzi S., Garzia F. Magnetic field reduction by means of active shielding techniques. WIT Transactions on Biomedicine and Health, 2003, vol. 7, pp. 79-89. doi: https://doi.org/10.2495/ehr030091.

Buriakovskyi S.G., Maslii A.S., Pasko O.V., Smirnov V.V. Mathematical modelling of transients in the electric drive of the switch – the main executive element of railway automation. Electrical Engineering & Electromechanics, 2020, no. 4, pp. 17-23. doi: https://doi.org/10.20998/2074-272X.2020.4.03.

Ostroverkhov M., Chumack V., Monakhov E., Ponomarev A. Hybrid Excited Synchronous Generator for Microhydropower Unit. 2019 IEEE 6th International Conference on Energy Smart Systems (ESS), Kyiv, Ukraine, 2019, pp. 219-222. doi: https://doi.org/10.1109/ess.2019.8764202.

Ostroverkhov M., Chumack V., Monakhov E. Ouput Voltage Stabilization Process Simulation in Generator with Hybrid Excitation at Variable Drive Speed. 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 2019, pp. 310-313. doi: https://doi.org/10.1109/ukrcon.2019.8879781.

Tytiuk V., Chornyi O., Baranovskaya M., Serhiienko S., Zachepa I., Tsvirkun L., Kuznetsov V., Tryputen N. Synthesis of a fractional-order PIλDμ-controller for a closed system of switched reluctance motor control. Eastern-European Journal of Enterprise Technologies, 2019, no. 2 (98), pp. 35-42. doi: https://doi.org/10.15587/1729-4061.2019.160946.

Zagirnyak M., Chornyi O., Zachepa I. The autonomous sources of energy supply for the liquidation of technogenic accidents. Przeglad Elektrotechniczny, 2019, no. 5, pp. 47-50. doi: https://doi.org/10.15199/48.2019.05.12.

Chornyi O., Serhiienko S. A virtual complex with the parametric adjustment to electromechanical system parameters. Technical Electrodynamics, 2019, pp. 38-41. doi: https://doi.org/10.15407/techned2019.01.038.

Shchur I., Kasha L., Bukavyn M. Efficiency Evaluation of Single and Modular Cascade Machines Operation in Electric Vehicle. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 2020, pp. 156-161. doi: https://doi.org/10.1109/tcset49122.2020.235413.

Shchur I., Turkovskyi V. Comparative Study of Brushless DC Motor Drives with Different Configurations of Modular Multilevel Cascaded Converters. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 2020, pp. 447-451. doi: https://doi.org/10.1109/tcset49122.2020.235473.

Sushchenko O.A., Shyrokyi O.V. H2/H∞ optimization of system for stabilization and control by line-of-sight orientation of devices operated at UAV. 2015 IEEE International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), Kyiv, UKraine, 2015, pp. 235-238. doi: https://doi.org/10.1109/apuavd.2015.7346608.

Sushchenko O.A., Golitsyn V.O. Data processing system for altitude navigation sensor. 2016 4th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC), Kiev, Ukraine, 2016, pp. 84-87. doi: https://doi.org/10.1109/msnmc.2016.7783112.

Gal’chenko, V.Y., Vorob’ev, M.A. Structural synthesis of attachable eddy-current probes with a given distribution of the probing field in the test zone. Russian Journal of Nondestructive Testing, Jan. 2005, vol. 41, no. 1, pp. 29-33. doi: https://doi.org/10.1007/s11181-005-0124-7.

Halchenko, V.Y., Ostapushchenko, D.L. & Vorobyov, M.A. Mathematical simulation of magnetization processes of arbitrarily shaped ferromagnetic test objects in fields of given spatial configurations. Russian Journal of Nondestructive Testing, Sep. 2008, vol. 44, no. 9, pp. 589-600. doi: https://doi.org/10.1134/S1061830908090015.

Chystiakov P., Chornyi O., Zhautikov B., Sivyakova G. Remote control of electromechanical systems based on computer simulators. 2017 International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk, Ukraine, 2017, pp. 364-367. doi: https://doi.org/10.1109/mees.2017.8248934.

Zagirnyak M., Bisikalo O., Chorna O., Chornyi O. A Model of the Assessment of an Induction Motor Condition and Operation Life, Based on the Measurement of the External Magnetic Field. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), Kharkiv, 2018, pp. 316-321. doi: https://doi.org/10.1109/ieps.2018.8559564.

Ummels M. Stochastic Multiplayer Games Theory and Algorithms. Amsterdam University Press, 2010. 174 p.

Shoham Y., Leyton-Brown K. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, 2009. 504 p.

Ray T., Liew K.M. A Swarm Metaphor for Multiobjective Design Optimization. Engineering Optimization, 2002, vol. 34, no. 2, pp. 141-153. doi: https://doi.org/10.1080/03052150210915.

Zilzter Eckart. Evolutionary algorithms for multiobjective optimizations: methods and applications. PhD Thesis Swiss Federal Institute of Technology, Zurich, 1999. 114 p.

Xiaohui Hu, Eberhart R.C., Yuhui Shi. Particle swarm with extended memory for multiobjective optimization. Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706), Indianapolis, IN, USA, 2003, pp. 193-197. doi: https://doi.org/10.1109/sis.2003.1202267.

Pulido G.T., Coello C.A.C. A constraint-handling mechanism for particle swarm optimization. Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), Portland, OR, USA, 2004, vol. 2, pp. 1396-1403. doi: https://doi.org/10.1109/cec.2004.1331060.

Michalewicz Z., Schoenauer M. Evolutionary Algorithms for Constrained Parameter Optimization Problems. Evolutionary Computation, 1996, vol. 4, no. 1, pp. 1-32. doi: https://doi.org/10.1162/evco.1996.4.1.1.

Parsopoulos K.E., Vrahatis M.N. Particle swarm optimization method for constrained optimization problems. Proceedings of the Euro-International Symposium on Computational Intelligence, 2002, pp. 174-181.

Xin-She Yang, Zhihua Cui, Renbin Xiao, Amir Hossein Gandomi, Mehmet Karamanoglu. Swarm Intelligence and Bio-Inspired Computation: Theory and Applications, Elsevier Inc., 2013. 450 p.

##submission.downloads##

Опубліковано

2021-04-10

Як цитувати

Kuznetsov, B. I. ., Nikitina, T. B. ., Bovdui, I. V. ., Kolomiets, V. V. ., & Kobylianskiy, B. B. . (2021). Overhead power lines magnetic field reducing in multi-story building by active shielding means. Електротехніка і Електромеханіка, (2), 23–29. https://doi.org/10.20998/2074-272X.2021.2.04

Номер

Розділ

Електротехнічні комплекси та системи

Статті цього автора (авторів), які найбільше читають

1 2 3 > >>