Estimation of the main dimensions of the traction permanent magnet-assisted synchronous reluctance motor
DOI:
https://doi.org/10.20998/2074-272X.2021.2.01Keywords:
permanent magnet-assisted synchronous reluctance motor, traction electric drive, permanent magnet, energy efficiencyAbstract
Goal. The goal of the research is to develop an algorithm for selecting the main dimensions of a traction permanent magnet-assisted synchronous reluctance motor. Methodology. A method for determining the main dimensions of the motor, which combines the analytical selection of stator parameters and numerical field calculations for the selection of rotor parameters. The need to check the mechanical strength of a rotor with permanent NdFeB magnets in flux barriers is shown. Results. The article proposes an algorithm for selecting the main dimensions of a traction permanent magnet-assisted synchronous reluctance motor, which combines analytical expressions for selecting stator parameters and numerical field calculations for selecting rotor parameters. It is determined that analytical methods for calculating the magnetic circuit need to be developed in order to reduce the time to select the main dimensions of the motor. Originality. For the first time the sizes of active parts of the permanent magnet-assisted synchronous reluctance motor with power of 180 kW for the drive of wheels of the trolleybus are defined. Practical significance. As a result of research the sizes of active parts, stator winding data and a design of a rotor of the electric motor are defined. The obtained results can be applied when creating an electric motor for a trolleybus.
References
Luvishis A.L. Asynchronous drive: the beginning of the path. Lokomotiv, 2017, no. 1 (721), pp .44-46. (Rus).
Luvishis A.L. New locomotives of the US railways. Railway transport, 2018, no. 8, pp. 70-77. (Rus).
Lyubarsky B.G. Teoretychni osnovy dlia vyboru ta otsinky perspektyvnykh system elektromekhanichnoho peretvorennia enerhii elektrorukhomoho skladu: dys. dokt. tekhn. nauk [Theoretical bases for a choice and an estimation of perspective systems of electromechanical conversion of energy of an electric rolling stock: Dr. tech. sci. dissertation]. Kharkiv, NTU «KhPI», 2014. 368 p. (Ukr).
Yatsko S., Sytnik B., Vashchenko Y., Sidorenko A., Liubarskyi B., Veretennikov I., Glebova M. Comprehensive approach to modeling dynamic processes in the system of underground rail electric traction. Eastern-European Journal of Enterprise Technologies, Jan. 2019, vol. 1, no. 9 (97), pp. 48-57. doi: https://doi.org/10.15587/1729-4061.2019.154520.
Bezruchenko V.M., Varchenko V.K., Chumak V.V. Tiahovi elektrychni mashyny elektrorukhomoho skladu [Traction electric machines of electro-rolling stock]. Dnipropetrovsk, DNUZT Publ., 2003. 252 p. (Ukr).
Yatsko S., Sidorenko A., Vashchenko Ya., Lyubarskyi B., Yeritsyan B. Method to improve the efficiency of the traction rolling stock with onboard energy storage. International journal of renewable energy research, 2019, vol. 9, no. 2, рр. 848-858. Available at: https://www.ijrer.org/ijrer/index.php/ijrer/article/view/9143/pdf (Accessed 15.08.2020).
Liubarskyi B., Demydov A., Yeritsyan B., Nuriiev R., Iakunin D. Determining electrical losses of the traction drive of electric train based on a synchronous motor with excitation from permanent magnets. Eastern-European Journal of Enterprise Technologies, Apr. 2018, vol. 2, no. 9 (92), pp. 29-39. doi: https://doi.org/10.15587/1729-4061.2018.127936.
Stipetic S., Zarko D., Kovacic M. Optimised design of permanent magnet assisted synchronous reluctance motor series using combined analytical–finite element analysis based approach. IET Electric Power Applications, May 2016, vol. 10, no. 5, pp. 330-338. doi: https://doi.org/10.1049/iet-epa.2015.0245.
Haataja J., Pyrhönen J. Permanent magnet assisted synchronous reluctance motor: an alternative motor in variable speed drives. In: Parasiliti F., Bertoldi P. (eds) Energy Efficiency in Motor Driven Systems, 2003. Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/978-3-642-55475-9_16.
Krause P.C., Wasynczuk O., Pekarek S.D. Electromechanical Motion Devices. 2nd ed. 2012, Wiley-IEEE, 544 р.
Viego-Felipe P.R., Gómez-Sarduy J.R., Sousa-Santos V., Quispe-Oqueña E.C. Motores sincrónicos de reluctancia asistidos por iman permanente: Un nuevo avance en el desarrollo de los motores eléctricos. Ingeniería, investigación y tecnología, Jul. 2018, vol. 19, no. 3, pp. 269-279. doi: https://doi.org/10.22201/fi.25940732e.2018.19n3.023. (Esp).
Wu W., Zhu X., Quan L., Du Y., Xiang Z., Zhu X. design and analysis of a hybrid permanent magnet assisted synchronous reluctance motor considering magnetic saliency and PM usage. IEEE Transactions on Applied Superconductivity, April 2018, vol. 28, no. 3, pp. 1-6, art no. 5200306. doi: https://doi.org/10.1109/tasc.2017.2775584.
Reza R. Moghaddam. Synchronous Reluctance Machine (SynRM) in Variable Speed Drives (VSD) Applications – Theoretical and Experimental Reevaluation. Doctoral Thesis. Royal Institute of Technology, Stockholm, Sweden, 2011, 260 р. Available at : http://www.diva-portal.org/smash/get/diva2:417890/FULLTEXT01.pdf (Accessed 21.09.2020).
Dehghani Ashkezari J., Khajeroshanaee H., Niasati M., Jafar Mojibian M. Optimum design and operation analysis of permanent magnet-assisted synchronous reluctance motor. Turkish journal of electrical engineering & computer sciences, 2017, vol. 25, pp. 1894-1907. doi: https://doi.org/10.3906/elk-1603-170.
Juergens J., Fricassè A., Marengo L., Gragger J., De Gennaro M., Ponick B. Innovative design of an air cooled ferrite permanent magnet assisted synchronous reluctance machine for automotive traction application. 2016 XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 2016, pp. 803-810. doi: https://doi.org/10.1109/icelmach.2016.7732618.
Trancho E., Ibarra E., Arias A., Kortabarria I., Jurgens J., Marengo L., Fricasse A., Gragger J.V. PM-Assisted Synchronous Reluctance Machine Flux Weakening Control for EV and HEV Applications. IEEE Transactions on Industrial Electronics, April 2018, vol. 65, no. 4, pp. 2986-2995. doi: https://doi.org/10.1109/tie.2017.2748047.
Finite Element Method Magnetics. Available at: https://www.femm.info/wiki/HomePage (accessed 15.06.2020).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 B. G. Liubarskyi, L. V. Overianova, Ie. S. Riabov, D. I. Iakunin, O. O. Ostroverkh, Y. V. Voronin
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.