Electromechanical guidance system based on a fuzzy proportional-plus-differential position controller

Authors

DOI:

https://doi.org/10.20998/2074-272X.2021.3.04

Keywords:

fuzzy controller, positioning, adaptation, overshoot, speed

Abstract

Purpose. The purpose is to develop solutions for the implementation of optimal laws of arms positioning, overshoot-free and requiring no post-adjustments. Method. The control model is based on the fuzzy set theory; and the structural modeling methodology is used to study the dynamics indices. Results. The structural scheme of the positional electromechanical system with a fuzzy proportional-plus-differential position controller and the method of control adaptation to the position reference signal change are obtained. Scientific novelty. A model of a fuzzy proportional-differential controller signal adaptation in the structure of a positional electromechanical system is proposed. Practical value. A solution is obtained for the implementation of optimal guidance process, non-overshooting and requiring no post-adjustments, also featuring the maximum weapons speed and minimal sensitivity to parametric disturbances.

Author Biographies

Ya. S. Paranchuk, Lviv Polytechnic National University, Ukraine

Doctor of Technical Science, Professor

Y. V. Shabatura, Hetman Petro Sahaidachnyi National Army Academy, Ukraine

Doctor of Technical Science, Professor

O. O. Kuznyetsov, Hetman Petro Sahaidachnyi National Army Academy, Ukraine

PhD, Associate Professor

References

Krainyk L.V., Hrubel M.H., Yalnytskyi O.D. Analysis of devel-opment of the modern fighting wheeled machines. Systems of Arms and Military Equipment, 2017, no. 1 (49), pp. 126-131. Available at: http://www.hups.mil.gov.ua/periodic-app/article/17585/eng (accessed 12 October 2020). (Ukr).

BM-21 Combat Vehicle. Technical description and operating instructions. Moscow, Voenizdat Publ., 1982. 99 p. (Rus).

Kuznetsov B.I., Nikitina T.B., Kolomiets V.V., Bovdui I.V. Improving of electromechanical servo systems accuracy. Electri-cal Engineering & Electromechanics, 2018, no. 6, pp. 33-37. doi: https://doi.org/10.20998/2074-272X.2018.6.04.

Kuznetsov B.I., Nikitina T.B., Bovdui I.V., Kobilyanskiy B.B. Improving of electromechanical stabilization systems accuracy. Electrical Engineering & Electromechanics, 2019, no. 2, pp. 21-27. doi: https://doi.org/10.20998/2074-272X.2019.2.04.

Paranchuk Ya.S., Chumakevych V.O., Evdokimov P.M., Mos-kalyk V.O. High-speed electromechanical guidance and stabili-zation system based on pulse-width converter with fuzzy con-trol. Proceedings of International Scientific and Technical Con-ference «Problems of Enhancing the Energy Efficiency of the Electromechanical Converters in Electrical Energy Systems», Sevastopol, Ukraine, 2013, pp. 71-72. (Ukr).

Paranchuk Y., Evdokimov P., Kuznyetsov O. Electromechanical positioning system with a neuro-fuzzy corrector. Przeglad Elek-trotechniczny, 2020, no. 9, pp. 52-55. doi: https://doi.org/10.15199/48.2020.09.11.

Chilikin M.G., Klyuchev V.I., Sandler A.S. Theory of Automated Electric Drives. Moscow, Energiya Publ., 1979. 616 p. (Rus).

Lebedev Ye.D., Neimark V.Ye., Pistrak M.Ya., Slezhanovskiy O.V. Control of DC Electric Drives with Semiconductor Con-verters. Moscow, Energiya Publ., 1970. 200 p. (Rus).

De Azevedo H. R., Branodao S. F. M., Da Mota Alves J. B. A fuzzy logic controller for DC motor position control. Proceed-ings of IEEE 2nd International Workshop on Emerging Tech-nologies and Factory Automation (ETFA '93), 1993, pp. 18-27. doi: https://doi.org/10.1109/etfa.1993.396433.

Manikandan R., Arulmozhiyal R. Position control of DC servo drive using fuzzy logic controller. 2014 International Confer-ence on Advances in Electrical Engineering (ICAEE), 2014, pp. 1-5. doi: https://doi.org/10.1109/icaee.2014.6838474.

Priymak B.I., Bondarenko M.M., Khalimovsky O.M. Fuzzy control of electromechanical objects. Bulletin of Scientific Works of Dni-prodzerzhynsk State Technical University. Special Issue «Problems of Automated Electric Drive», 2007, pp. 308-311. (Ukr).

Lukichev D.V., Demidova G.L. Fuzzy control system of posi-tioning servo drives of elastic coupling rotary supports, Vestnik IGEU, 2013, no. 6, pp. 60-64. Available at: http://vestnik.ispu.ru/sites/vestnik.ispu.ru/files/publications/str.60-64_0.pdf (accessed 12 October 2020). (Rus).

Paranchuk Y., Matsyhin A. The system of arc lengths regulation of an electric arc furnace with a neuro-controller, Przeglad Elektrotechniczny, 2013, vol. 89, no. 3A, pp. 271-273. Available at: http://pe.org.pl/articles/2013/3a/58.pdf (accessed 12 October 2020).

Ying H. Fuzzy Control and Modeling: Analytical Foundations and Applications, IEEE press, 2000. 342 p. Available at: https://ieeexplore.ieee.org/book/5263877 (accessed 12 October 2020).

Lozynskyy O., Paranchuk Y., Paranchuk R. Fuzzy control law of electrode travel in arc steelmaking furnace. 2015 16th Interna-tional Conference on Computational Problems of Electrical Engineering (CPEE), 2015, pp. 103-106. doi: https://doi.org/10.1109/cpee.2015.7333349.

Mendel J. M., John R. I. B. Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy Systems, 2002, vol. 10, no. 2, pp. 117-127. doi: https://doi.org/10.1109/91.995115.

Paranchuk Ya.S. , Paranchuk R.Ya. Neural Network System for Continuous Voltage Monitoring in Electric Arc Furnace. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2016, iss. 2, pp. 74-80. Available at: http://nvngu.in.ua/index.php/en/archive/on-divisions-of-science/electrical-engineering/3398-neutral-network-system-for-continuous-voltage-monitoring-in-electric-arc-furnace (accessed 12 October 2020).

Paranchuk Y.S., Paranchuk R.Y. Research of arc furnace electri-cal mode with a fuzzy control model. Electrical Engineering & Electromechanics, 2020, no. 4, pp. 30-36. doi: https://doi.org/10.20998/2074-272X.2020.4.05.

Begian M.B., Melek W.W., Mendel J.M. Stability analysis of type-2 fuzzy systems. 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), 2008, pp. 947-953. doi: https://doi.org/10.1109/fuzzy.2008.4630483.

Lozynskyy O., Paranchuk Y., Kobylianskyi O. Simulink model of electric modes in electric arc furnace. 2017 IEEE Interna-tional Young Scientists Forum on Applied Physics and Engi-neering (YSF), 2017, pp. 54-57. doi: https://doi.org/10.1109/ysf.2017.8126591.

Published

2021-06-23

How to Cite

Paranchuk, Y. S., Shabatura, Y. V., & Kuznyetsov, O. O. (2021). Electromechanical guidance system based on a fuzzy proportional-plus-differential position controller. Electrical Engineering & Electromechanics, (3), 25–31. https://doi.org/10.20998/2074-272X.2021.3.04

Issue

Section

Electrotechnical complexes and Systems