DOI: https://doi.org/10.20998/2074-272X.2020.6.07

SLIME MOULD ALGORITHM FOR PRACTICAL OPTIMAL POWER FLOW SOLUTIONS INCORPORATING STOCHASTIC WIND POWER AND STATIC VAR COMPENSATOR DEVICE

Ramzi Kouadri, Linda Slimani, Tarek Bouktir

Анотація


Мета. У статті пропонується процедура застосування нового метаеврістіческого методу в реальній електроенергетичній системі для розв’язання задач оптимального потоку енергії, а саме алгоритму слизової цвілі, який заснований на поведінці рою і морфології слизової цвілі в природі. Дане дослідження спрямоване на тестування і перевірку ефективності запропонованого алгоритму для отримання хороших рішень для проблем оптимального потоку потужності шляхом включення пристроїв стохастичною вітрової генерації і статичних компенсаторів VAR. У зв'язку з цим, розглядаються різні випадки, щоб мінімізувати загальну вартість генерації, знизити втрати активної потужності і поліпшити профіль напруги. Методологія. В якості цільової функції завдання розглядається мінімальна сукупна вартість традиційної генерації електроенергії і стохастичної вітрової генерації при задоволенні обмежень енергосистеми. Стохастична функція енергії вітру враховує величини штрафів через недооцінку і резервні витрати через завищену оцінку доступної вітрової енергії. У даній роботі функція щільності ймовірності Вейбулла використовується для моделювання і характеристики розподілів швидкості вітру. Практична цінність. Запропонований алгоритм був перевірений на системі шин IEEE-30 і великий алжирської тестовій енергосистемі зі 114 шинами. У випадках, коли мета полягає в тому, щоб звести до мінімуму традиційне вироблення електроенергії, досягнуті результати в обох тестових енергосистемах показали, що алгоритм слизової цвілі функціонує краще, ніж інші існуючі методи оптимізації. Крім того, досягнуті результати з використанням вітрової енергії і статичного компенсатора VAR ілюструють ефективність і продуктивність запропонованого алгоритму в порівнянні з алгоритмом оптимізатора мурашиних левів з точки зору збіжності до глобального оптимального рішення.

Ключові слова


оптимальний потік енергії, алгоритм слизової цвілі, стохастична генерація енергії вітру, статичні VAR компенсатори

Повний текст:

PDF ENG (English)

Посилання


Bhatia S.C. Energy resources and their utilization. Advanced Renewable Energy Systems, pp. 1–31, 2014. doi: 10.1016/B978-1-78242-269-3.50001-2.

Talari S., Shafie-khah M., Osório G.J., Aghaei J., Catalão J.P.S. Stochastic modelling of renewable energy sources from operators' point-of-view: A survey. Renewable and Sustainable Energy Reviews, 2018, vol. 81, part 2, pp. 1953-1965. doi: 10.1016/j.rser.2017.06.006.

Roy R., Jadhav H.T. Optimal power flow solution of power system incorporating stochastic wind power using Gbest guided artificial bee colony algorithm. International Journal of Electrical Power & Energy Systems, 2015, vol. 64, pp. 562-578. doi: 10.1016/j.ijepes.2014.07.010.

Elattar E.E. Optimal Power Flow of a Power System Incorporating Stochastic Wind Power Based on Modified Moth Swarm Algorithm. IEEE Access, 2019, vol. 7, pp. 89581-89593. doi: 10.1109/ACCESS.2019.2927193.

Biswas P.P., Suganthan P.N., Amaratunga G.A.J. Optimal power flow solutions incorporating stochastic wind and solar power. Energy Conversion and Management, 2017, vol. 148, pp. 1194-1207. doi: 10.1016/j.enconman.2017.06.071.

Panda A., Tripathy M. Security constrained optimal power flow solution of wind-thermal generation system using modified bacteria foraging algorithm. Energy, 2015, vol. 93, pp. 816-827. doi: 10.1016/j.energy.2015.09.083.

Ahmad M., Javaid N., Niaz I.A., Shafiq S., Rehman O.U., Hussain H.M. Application of bird swarm algorithm for solution of optimal power flow problems. 12-th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2018). Advances in Intelligent Systems and Computing, vol 772, pp. 280-291. Springer, Cham. doi: 10.1007/978-3-319-93659-8_25.

Duman S., Li J., Wu L., Guvenc U. Optimal power flow with stochastic wind power and FACTS devices: a modified hybrid PSOGSA with chaotic maps approach. Neural Computing and Applications, 2019, vol. 32, no. 12, pp. 8463-8492. doi: 10.1007/s00521-019-04338-y.

El-Fergany A.A., Hasanien H.M. Salp swarm optimizer to solve optimal power flow comprising voltage stability analysis. Neural Computing and Applications, 2019, vol. 32, no. 9, pp. 5267-5283. doi: 10.1007/s00521-019-04029-8.

Mohamed A.-A.A., Mohamed Y.S., El-Gaafary A.A., Hemeida A.M. Optimal power flow using moth swarm algorithm. Electric Power Systems Research, 2017, vol. 142, pp. 190-206. doi: 10.1016/j.epsr.2016.09.025.

Biswas P.P., Suganthan P.N., Mallipeddi R., Amaratunga G.A.J. Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques. Engineering Applications of Artificial Intelligence, 2018, vol. 68, pp. 81-100. doi: 10.1016/j.engappai.2017.10.019.

Surender Reddy S., Srinivasa Rathnam C. Optimal Power Flow using Glowworm Swarm Optimization,” International Journal of Electrical Power & Energy Systems, 2016, vol. 80, pp. 128-139. doi: 10.1016/j.ijepes.2016.01.036.

Abaci K., Yamacli V. Differential search algorithm for solving multi-objective optimal power flow problem. International Journal of Electrical Power & Energy Systems, 2016, vol. 79, pp. 1-10. doi: 10.1016/j.ijepes.2015.12.021.

Trivedi I.N., Jangir P., Parmar S.A., Jangir N. Optimal power flow with voltage stability improvement and loss reduction in power system using Moth-Flame Optimizer. Neural Computing and Applications, 2016, vol. 30, no. 6, pp. 1889-1904. doi: 10.1007/s00521-016-2794-6.

Pulluri H., Naresh R., Sharma V. A solution network based on stud krill herd algorithm for optimal power flow problems. Soft Computing, 2016, vol. 22, no. 1, pp. 159-176. doi: 10.1007/s00500-016-2319-3.

Jadon S.S., Bansal J.C., Tiwari R., Sharma H. Artificial bee colony algorithm with global and local neighborhoods. International Journal of System Assurance Engineering and Management, 2014, vol. 9, no. 3, pp. 589-601. doi: 10.1007/s13198-014-0286-6.

Duman S. Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones. Neural Computing and Applications, 2016, vol. 28, no. 11, pp. 3571-3585. doi: 10.1007/s00521-016-2265-0.

Bouchekara H.R.E.H., Chaib A.E., Abido M.A., El-Sehiemy R.A. Optimal power flow using an Improved Colliding Bodies Optimization algorithm. Applied Soft Computing, 2016, vol. 42, pp. 119-131. doi: 10.1016/j.asoc.2016.01.041.

Hariharan T., Sundaram K.M. Optimal Power Flow Using Firefly Algorithm with Unified Power Flow Controller. Circuits and Systems, 2016, vol. 07, no. 08, pp. 1934-1942. doi: 10.4236/cs.2016.78168.

Bouchekara H.R.E.H. Optimal power flow using black-hole-based optimization approach. Applied Soft Computing, 2014, vol. 24, pp. 879-888. doi: 10.1016/j.asoc.2014.08.056.

Bouchekara H.R.E.H., Abido M.A., Chaib A.E., Mehasni R. Optimal power flow using the league championship algorithm: A case study of the Algerian power system. Energy Conversion and Management, 2014, vol. 87, pp. 58-70. doi: 10.1016/j.enconman.2014.06.088.

Mohan T.M., Nireekshana T. A Genetic algorithm for solving optimal power flow problem. Procedings 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), 2019, pp. 1438-1440. doi: 10.1109/ICECA.2019.8822090.

Bentouati B., Chettih S., Jangir P., Trivedi I.N. A solution to the optimal power flow using multi-verse optimizer. Journal of Electrical Systems, 2016, vol. 12, no. 4, pp. 716-733,.

Ren P., Li N. Optimal power flow solution using the Harmony search algorithm. Applied Mechanics and Materials, 2014, vol. 599-601, pp. 1938-1941. doi: 10.4028/www.scientific.net/AMM.599-601.1938.

Ghosh I., Roy P.K. Application of earthworm optimization algorithm for solution of optimal power flow. 2019 International Conference on Opto-Electronics and Applied Optics (Optronix), 2019, vol. 1, no. 1, pp. 1-6. doi: 10.1109/OPTRONIX.2019.8862335.

Hetzer J., Yu D.C., Bhattarai K. An Economic Dispatch Model Incorporating Wind Power. IEEE Transactions on Energy Conversion, 2008, vol. 23, no. 2, pp. 603-611. doi: 10.1109/tec.2007.914171.

Makhloufi S., Mekhaldi A., Teguar M. Three powerful nature-inspired algorithms to optimize power flow in Algeria’s Adrar power system. Energy, 2016, vol. 116, pp. 1117-1130. doi: 10.1016/j.energy.2016.10.064.

Panda A., Tripathy M. Optimal power flow solution of wind integrated power system using modified bacteria foraging algorithm. International Journal of Electrical Power & Energy Systems, 2014, vol. 54, pp. 306-314. doi: 10.1016/j.ijepes.2013.07.018.

Teeparthi K., Vinod Kumar D.M. Multi-objective hybrid PSO-APO algorithm based security constrained optimal power flow with wind and thermal generators. Engineering Science and Technology, an International Journal, 2017, vol. 20, no. 2, pp. 411-426. doi: 10.1016/j.jestch.2017.03.002.

Li S., Chen H., Wang M., Heidari A.A., Mirjalili S. Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems, 2020, vol. 111, pp. 300-323. doi: 10.1016/j.future.2020.03.055.

Kouadri R., Slimani L., Bouktir T., Musirin I. Optimal Power Flow Solution for Wind Integrated Power in presence of VSC-HVDC Using Ant Lion Optimization. Indonesian Journal of Electrical Engineering and Computer Science, 2018, vol. 12, no. 2, p. 625. doi: 10.11591/ijeecs.v12.i2.pp625-633.

Attia A.-F., El Sehiemy R.A., Hasanien H.M. Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. International Journal of Electrical Power & Energy Systems, 2018, vol. 99, pp. 331-343. doi: 10.1016/j.ijepes.2018.01.024.

Haddi S., Bouketir O., Bouktir T. Improved Optimal Power Flow for a Power System Incorporating Wind Power Generation by Using Grey Wolf Optimizer Algorithm. Advances in Electrical and Electronic Engineering, 2018, vol. 16, no. 4, pp. 471-488. doi: 10.15598/aeee.v16i4.2883.

Slimani L., Bouktir T. Optimal Power Flow Solution of the Algerian Electrical Network using Differential Evolution Algorithm. TELKOMNIKA (Telecommunication Computing Electronics and Control), 2012, vol. 10, no. 2, p. 199. doi: 10.12928/telkomnika.v10i2.778.

Kouadri R., Musirin I., Slimani L., Bouktir T. OPF for large scale power system using ant lion optimization: a case study of the Algerian electrical network. IAES International Journal of Artificial Intelligence (IJ-AI), 2020, vol. 9, no. 2, p. 252. doi: 10.11591/ijai.v9.i2.pp252-260.

Mahdad B., Srairi K. Solving practical economic dispatch using hybrid GA–DE–PS method. International Journal of System Assurance Engineering and Management, 2013, vol. 5, no. 3, pp. 391-398. doi: 10.1007/s13198-013-0180-7.

Herbadji O., Slimani L., Bouktir T. Optimal power flow with four conflicting objective functions using multiobjective ant lion algorithm: A case study of the algerian electrical network. Iranian Journal of Electrical and Electronic Engineering, 2019, vol. 15, no. 1, pp. 94-113. doi: 10.22068/IJEEE.15.1.94.

Derai A., Diaf A.K.S. Etude de faisabilité technico-économique de fermes éoliennes en Algérie. Rev. des Energies Renouvelables, 2017, vol. 20, no. 4, pp. 693-712. (Fra).




Copyright (c) 2020 Ramzi Kouadri, Linda Slimani, Tarek Bouktir


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2074–272X (Print)
ІSSN 2309–3404 (Online)