DOI: https://doi.org/10.20998/2074-272X.2020.5.01

CHALLENGES OF DYNAMIC SIMULATION OF HIGH-SPEED ELECTROMAGNETIC VALVES OF GAS DISTRIBUTION DEVICES

E. I. Baida, B. V. Klymenko, Michael G. Pantelyat, Yu. A. Yelanskyi, D. Trichet, G. Wasselynck

Анотація


Быстродействующие электромагнитные клапаны газораспределительных устройств применяются в современной ракетно-космической технике в качестве реактивных микродвигателей исполнительных органов систем стабилизации ракет, а также для управления движением космическими летательными аппаратами в пространстве. Проблема создания простых в эксплуатации и надежных в работе указанных клапанов является актуальной. В настоящей работе предлагается на стадии разработки и проектирования выполнять компьютерное моделирование взаимосвязанных электромеханических процессов, таких как: распределение нестационарного электромагнитного поля, переходные процессы в электрической цепи, движение якоря электромагнита. При этом расчет силы, с которой сжатый газ действует на соответствующие конструктивные элементы клапана, предлагается выполнять путем решения системы уравнений Навье-Стокса. Все задачи решаются численными методами в осесимметричной постановке с соответствующими начальными и граничными условиями. Повышение точности электромагнитных расчетов и учет движения якоря электромагнита в процессе мультифизического численного моделирования достигается благодаря использованию так называемых перестраиваемых упругих сеток. В работе приведен сравнительный анализ численных результатов, полученных для нескольких конструкций электромагнитов. Проанализированы особенности динамики быстродействующих электромагнитов газораспределительных клапанов при выполнении операций включения и отключения, приведены соответствующие динамические характеристики, рассчитанные по предложенной методике. 

Ключові слова


быстродействующие электромагниты; динамика; метод конечных элементов; мультифизика; упругая сетка

Повний текст:

PDF ENG (English)

Посилання


Olejnik V.P., Yelanskyi Yu.A., Kaluger L.G. Mathematical modelling of a gas distributor of the carrier rocket gas-jet control system. Space Technology. Missile Weapons, 2017, iss. 1 (113), pp. 59-66. (Rus).

BeliaevN.M., Belik N.P., Uvarov E.I. Jet Control Systems for Spacecrafts. Moscow, Mechanical Engineering Publ., 1979. 232 p. (Rus).

Bajda Ye.I., Klymenko B.V., Pantelyat M.G., Korol O.G., Yelanskyi Yu.A. Peculiarities of calculating forced electromagnets shunt windings heating in transient modes. Proceedings of the 18th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering. Graz, Austria, September 2018, p. 31-36.

Bajda Ye.I., Klymenko B.V., Pantelyat M.G., Yelanskyi Yu.A., Trichet D., Wasselynck G. Peculiarities of calculating the dynamics of high-speed electromagnets using tunable elastic meshes. Proceedings of the 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF'2019). Nancy, France, August 2019. 6 p.

Zhang J.Z., Cai C.H., Wu C.G. Design and analysis of a new permanent magnet actuator for medium voltage vacuum circuit breakers. Applied Mechanics and Materials, 2013, vol. 313-314, pp. 20-26. doi: 10.4028/www.scientific.net/amm.313-314.20.

Bissal A., Magnusson J., Salinas E., Engdahl G. Multiphysics modeling and experimental verification of ultra-fast electro-mechanical actuators. International Journal of Applied Electromagnetics and Mechanics, 2015, vol. 49, no. 1, pp. 51-59. doi: 10.3233/jae-140176.

Bajda Ye.I., Klymenko B.V., Pantelyat M.G., Trichet D. Wasselynck G. Electromagnetic and thermal transients during induction heating of cylindrical workpieces. Acta Technica, 2018, vol. 63, no. 5, pp. 657-682.

Pantelyat M.G. Multiphysical numerical analysis of electromagnetic devices: state-of-the-art and generalization. Electrical Engineering & Electromechanics, 2013, no. 3, pp. 29-35.

Pantelyat M.G. Multiphysics in electromagnetic devices simulation and design: an attempt of generalization. Acta Technica, 2012, vol. 57, no. 2, pp. 127-142.

Pantelyat M.G., Shulzhenko N.G., Matyukhin Yu.I., Gontarowsky P.P., Doležel I., Ulrych B. Numerical simulation of electrical engineering devices: magneto-thermo-mechanical coupling. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2011, vol. 30, no. 4, pp. 1189-1204. doi: 10.1108/03321641111133127.

Pantelyat M.G., Féliachi M. Magneto-thermo-elastic-plastic simulation of inductive heating of metals. The European Physical Journal Applied Physics, 2002, vol. 17, no. 1, pp. 29-33. doi: 10.1051/epjap:2001001.

Podoltsev O.D., Kucheriava I.M. Multiphysics modeling of electrotechnical devices. Technical Electrodynamics, 2015, no. 2, pp. 3-15 (Rus).

Podoltsev O.D., Kucheriava I.M. Multiphysics modeling in electrical engineering. Kyiv, TheInstitute ofElectrodynamics of theNationalAcademy of Sciences ofUkraine Publ., 2015. 305 p. (Rus).

Stratton J.A. Electromagnetic Theory. NJ, Wiley, 2007. 640 p.

Meeker D. Improvised open boundary conditions for magnetic finite elements. IEEE Transactions on Magnetics, 2013, vol. 49, iss. 10, pp. 5243-5247. doi: 10.1109/tmag.2013.2260348.

Cizmas P.G.A., Gargoloff J.I. Mesh generation and deformation algorithm for aeroelasticity simulations. Journal of Aircraft, 2008, vol. 45, no. 3, pp. 1062-1066. doi: 10.2514/1.30896.

Dwight R.P. Robust mesh deformation using the linear elasticity equations. Computational Fluid Dynamics, 2006, pp. 401-406. doi: 10.1007/978-3-540-92779-2_62.


Пристатейна бібліографія ГОСТ






Copyright (c) 2020 E. I. Baida, B. V. Klymenko, Michael G. Pantelyat, Yu. A. Yelanskyi, D. Trichet, G. Wasselynck


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2074–272X (Print)
ІSSN 2309–3404 (Online)