DOI: https://doi.org/10.20998/2074-272X.2020.4.02

PERFORMANCE ANALYSIS OF SIX-PHASE INDUCTION MACHINE-MULTILEVEL INVERTER WITH ARBITRARY DISPLACEMENT

Marwa Ben Slimene

Анотація


Цель. В статье представлена d-q модель шестифазной асинхронной машины, снабженной двумя идентичными инверторами источника напряжения, пригодными для анализа динамической устойчивости при сбалансированных условиях работы. В аналитическую модель включено влияние общей взаимной индуктивности рассеяния между двойным статором. Модель разработана в общей системе отсчета с учетом смещений на 0°, 30° и 60° между двумя наборами обмоток статора. Основная цель данной работы – провести количественное исследование, чтобы показать преимущество питания шестифазной асинхронной машины многоуровневым инвертором. Общее гармоническое искажение напряжения, тока и пульсация крутящего момента являются основными целями исследования. Статья состоит из четырех разделов. После введения, второй раздел содержит разработку математических моделей применительно к шестифазной асинхронной машине. В третьем разделе представлено влияние смещения на 0°, 30° и 60° между двумя наборами обмоток статора, а также сравнение трех указанных случаев. После этого представлено сравнительное исследование двух, трех, пяти и семи уровней инвертора при питании шестифазной асинхронной машины. Для этой цели проведено моделирование с целью получения фазных токов и пульсаций крутящего момента в стационарном состоянии.

Ключові слова


шестифазная асинхронная машина; многофазные электроприводы; производительность многофазных машин; смещения; многоуровневый инвертор

Повний текст:

PDF ENG (English)

Посилання


Singh G.K., Pant V., Singh Y.P. Voltage source inverter driven multi-phase induction machine. Computers and Electrical Engineering, 2003, vol. 29, no. 8, pp. 813-834. doi: 10.1016/s0045-7906(03)00036-3.

Abbas M.A., Christen R., Jahns T.M. Six-Phase Voltage Source Inverter Driven Induction Motor. IEEE Transactions on Industry Applications, 1984, vol. IA-20, no. 5, pp. 1251-1259. doi: 10.1109/tia.1984.4504591.

Gupta N., Singh Y. Stability and response of extremum seeking feedback scheme for squirrel cage induction generator based WECS. International Journal of Advanced and Applied Sciences, 2017, vol. 4, no. 6, pp. 50-55. doi: 10.21833/ijaas.2017.06.007.

Miranda R.S., Jacobina C.B., Lima A.M.N. Modeling and analysis of six-phase induction machine under fault condition. 2009 Brazilian Power Electronics Conference, 2009, pp. 824-829. doi: 10.1109/cobep.2009.5347696.

Lipo T.A. A d-q model for six phase induction machine. International Conference on Electrical Machines ICEM,Athens,Greece, 1980, pp. 860-867.

Singh G.K., Singh D.K.P., NamK., Lim S.K. A simple indirect field-oriented control scheme for multiconverter-fed induction motor. IEEE Transactions on Industrial Electronics, 2005, vol. 52, no. 6, pp. 1653-1659. doi: 10.1109/tie.2005.858707.

Pant V., Singh G.K., Singh S.N. Modeling of a multi-phase induction machine under fault condition. Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems. PEDS’99 (Cat. No.99TH8475), 1999. doi: 10.1109/peds.1999.794542.

Zhao Y., Lipo T.A. Modeling and control of a multi-phase induction machine with structural unbalance. IEEE Transactions on Energy Conversion, 1996, vol. 11, no. 3, pp. 570-577. doi: 10.1109/60.537009.

Nelson R., Krause P. Induction machine analysis for arbitrary displacement between multiple winding sets. IEEE Transactions on Power Apparatus and Systems, 1974, vol. PAS-93, no. 3, pp. 841-848. doi: 10.1109/tpas.1974.293983.

Khlifi M.A. Analysis of an off-grid self-excited dual wound asynchronous generator for wind power generation. International Journal of Advanced and Applied Sciences, 2019, vol. 6, no. 6, pp. 35-42. doi: 10.21833/ijaas.2019.06.006.

Marwa B.S., Larbi K.M., Mouldi B.F., Habib R. Modeling and analysis of double stator induction machine supplied by a multi level inverter. 2012 16th IEEE Mediterranean Electrotechnical Conference, March 2012, pp. 269-272. doi: 10.1109/melcon.2012.6196430.

Tuballa M.L., Abundo M.L.S. Microgrid simulation and modeling for a utility in southern Negros Oriental, Philippines. International Journal of Advanced and Applied Sciences, 2018, vol. 5, no. 7, pp. 86-96. doi: 10.21833/ijaas.2018.07.011.

Al Ahmadi S., Khlifi M.A., Draou A. Voltage and frequency regulation for autonomous induction generators in small wind power plant. International Journal of Advanced and Applied Sciences, 2019, vol. 6, no. 1, pp. 95-98. doi: 10.21833/ijaas.2019.01.013.


Пристатейна бібліографія ГОСТ


  1. Singh G.K., Pant V., Singh Y.P. Voltage source inverter driven multi-phase induction machine. Computers and Electrical Engineering, 2003, vol. 29, no. 8, pp. 813-834. doi: 10.1016/s0045-7906(03)00036-3.
  2. Abbas M.A., Christen R., Jahns T.M. Six-Phase Voltage Source Inverter Driven Induction Motor. IEEE Transactions on Industry Applications, 1984, vol. IA-20, no. 5, pp. 1251-1259. doi: 10.1109/tia.1984.4504591.
  3. Gupta N., Singh Y. Stability and response of extremum seeking feedback scheme for squirrel cage induction generator based WECS. International Journal of Advanced and Applied Sciences, 2017, vol. 4, no. 6, pp. 50-55. doi: 10.21833/ijaas.2017.06.007.
  4. Miranda R.S., Jacobina C.B., Lima A.M.N. Modeling and analysis of six-phase induction machine under fault condition. 2009 Brazilian Power Electronics Conference, 2009, pp. 824-829. doi: 10.1109/cobep.2009.5347696.
  5. Lipo T.A. A d-q model for six phase induction machine. International Conference on Electrical Machines ICEM,Athens,Greece, 1980, pp. 860-867.
  6. Singh G.K., Singh D.K.P., NamK., Lim S.K. A simple indirect field-oriented control scheme for multiconverter-fed induction motor. IEEE Transactions on Industrial Electronics, 2005, vol. 52, no. 6, pp. 1653-1659. doi: 10.1109/tie.2005.858707.
  7. Pant V., Singh G.K., Singh S.N. Modeling of a multi-phase induction machine under fault condition. Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems. PEDS’99 (Cat. No.99TH8475), 1999. doi: 10.1109/peds.1999.794542.
  8. Zhao Y., Lipo T.A. Modeling and control of a multi-phase induction machine with structural unbalance. IEEE Transactions on Energy Conversion, 1996, vol. 11, no. 3, pp. 570-577. doi: 10.1109/60.537009.
  9. Nelson R., Krause P. Induction machine analysis for arbitrary displacement between multiple winding sets. IEEE Transactions on Power Apparatus and Systems, 1974, vol. PAS-93, no. 3, pp. 841-848. doi: 10.1109/tpas.1974.293983.
  10. Khlifi M.A. Analysis of an off-grid self-excited dual wound asynchronous generator for wind power generation. International Journal of Advanced and Applied Sciences, 2019, vol. 6, no. 6, pp. 35-42. doi: 10.21833/ijaas.2019.06.006.
  11. Marwa B.S., Larbi K.M., Mouldi B.F., Habib R. Modeling and analysis of double stator induction machine supplied by a multi level inverter. 2012 16th IEEE Mediterranean Electrotechnical Conference, March 2012, pp. 269-272. doi: 10.1109/melcon.2012.6196430.
  12. Tuballa M.L., Abundo M.L.S. Microgrid simulation and modeling for a utility in southern Negros Oriental, Philippines. International Journal of Advanced and Applied Sciences, 2018, vol. 5, no. 7, pp. 86-96. doi: 10.21833/ijaas.2018.07.011.
  13. Al Ahmadi S., Khlifi M.A., Draou A. Voltage and frequency regulation for autonomous induction generators in small wind power plant. International Journal of Advanced and Applied Sciences, 2019, vol. 6, no. 1, pp. 95-98. doi: 10.21833/ijaas.2019.01.013.




Copyright (c) 2020 Marwa Ben Slimene


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2074–272X (Print)
ІSSN 2309–3404 (Online)