DOI: https://doi.org/10.20998/2074-272X.2020.3.10

AN EFFECTIVE CONTROL OF AN ISOLATED INDUCTION GENERATOR SUPPLYING DC LOAD FOR WIND POWER CONVERTING APPLICATIONS

L. Louze, O. Abdessemad, A.L. Nemmour, A. Khezzar

Анотація


Целью данной статьи является разработка простого и надежного метода управления, основанного на хорошо известном подходе к управлению скольжением для асинхронного генератора с самовозбуждением, питающего изолированную нагрузку постоянного тока; данный принятый метод не требует больших объемов вычислений и может быть легко реализован на практике. В этом контексте данная работа начинается с развития математических основ этого метода управления и его применения в случае асинхронного генератора с самовозбуждением. Для этого машина подает произведенную активную мощность в нагрузку через статический ШИМ-преобразователь, оснащенный единственным конденсатором на стороне постоянного тока. Чтобы обеспечить регулирование выходного напряжения шины постоянного тока с учетом требований к нагрузке и колебаниям скорости вращения ротора, требуемые токи статора рассчитываются с учетом реактивной мощности, необходимой для намагничивания сердечника машины, наведенных напряжений в обмотках статора и заданного значения активной мощности, полученного из соответствующего контроллера напряжения шины постоянного тока в режиме скольжения. Что касается нелинейности математической модели напряжения  шины постоянного тока и неоднородности, характеризующей поведение системы «преобразователь-машина», стратегия скользящего режима будет представлять собой идеальный инструмент для определения размеров конструкции контроллера с высокими характеристиками управления. Для демонстрации обоснованности предлагаемого метода контроля, приведены результаты выполненного моделирования.

Ключові слова


асинхронный генератор с самовозбуждением; управление режимом скольжения; регулирование напряжения на шине постоянного тока

Повний текст:

PDF ENG (English)

Посилання


AI Jabri A.K., Alolah A.I. Capacitance requirement for isolated self-excited induction generator. IEE Proceedings B Electric Power Applications, 1990, vol. 137, no. 3, pp. 154-159. doi: 10.1049/ip-b.1990.0016.

Chan T.F. Capacitance requirements of self-excited induction generators. IEEE Transactions on Energy Conversion, 1993, vol. 8, no. 2, pp. 304-311. doi: 10.1109/60.222721.

Harrington R.J., Bassiouny F.M.M. New approach to determine the critical capacitance for self-excited induction generators. IEEE Transactions on Energy Conversion, 1998, vol. 13, no. 3, pp. 244-249. doi: 10.1109/60.707603.

Seyoum D., Rahman M.F. The dynamic characteristics of an isolated self-excited induction generator driven by a wind turbine. Industry Applications Society Annual Meeting (IAS), Conference Record of the IEEE. doi: 10.1109/IAS.2002.1042641.

Sandhu K.S., Jain S.P. Steady state operation of self-excited induction generator with varying wind speeds. International Journal of Circuits, Systems and Signal Processing, 2008, vol. 2, no. 1, pp. 26-33.

Haque M.H. A novel method of evaluating performance characteristics of a self-excited induction generator. IEEE Transactions on Energy Conversion, 2009, vol. 24, no. 2, pp. 358-365. doi: 10.1109/TEC.2009.2016124.

Bhim S., Madhusudan S., Tandon A.K. Transient performance of series-compensated three-phase self-excited induction generator feeding dynamic loads. IEEE Transactions on Industry Applications, 2010, vol. 46, no. 4, pp. 1271-1280. doi: 10.1109/TIA.2010.2049556.

Kheldoun A., Refoufi L., Khodja D.E. Analysis of the self-excited induction generator steady state performance using a new efficient algorithm. Electric Power Systems Research, 2012, vol. 86, no. 2, pp. 61-67. doi: 10.1016/j.epsr.2011.12.003.

Haitao L., Lili C., Xiaodan Z., Yunxia L., Xuehu P. Build-up steady-state analysis of wind-driven self-excited induction generators. The Journal of Engineering, 2017, vol. 2017, no. 13, pp. 1383-1387. doi: 10.1049/joe.2017.0558.

Elsharkawi M.A., Venkata S.S., Williams T.J., Butlar N.G. an adaptive power factor controller for three-phase induction generators. IEEE Transactions on Power Apparatus and Systems, 1985, vol. PAS-104, no. 7, pp. 1825-1831. doi: 10.1109/TPAS.1985.319219.

MalikN.H., Al-Bahrani A.H. Influence of the terminal capacitor on the performance characteristics of a self-excited induction generator. IEE Proceedings C Generation, Transmission and Distribution, 1990, vol. 137, no. 2, pp. 168-173. doi: 10.1049/ip-c.1990.0022.

Wang L., Dong-Jing L. Coordination Control of an AC-to-DC Converter and a Switched Excitation Capacitor Bank for an Autonomous Self-Excited Induction Generator in Renewable-Energy Systems. IEEE Transactions on Industry Applications, 2014, vol. 50, no. 4, pp. 2828-2836. doi: 10.1109/TIA.2014.2298555.

Stuty K., Bhuvaneswari G. Voltage regulation of a stand-alone Three-phase SEIG feeding single-phase loads. IEEE Students' Conference on Electrical, Electronics and Computer Science, 2014, doi: 10.1109/SCEECS.2014.6804472.

Mazurenko L.I., Dzhura O.V., Shevchuk S.P. Transients in a transistor-switched capacitor regulator of a stand-alone induction generator supplying a single-phase load. International Conference on Modern Electrical and Energy Systems (MEES), 2017. doi: 10.1109/MEES.2017.8248901.

Benhacine T.Z.E., Nesba A., Mekhtoub S., Ibtiouen R. A balancing method for three-phase SEIG feeding a single-phase load by using switched capacitors. International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), 2018. doi: 10.1109/CISTEM.2018.8613410.

de Resende J.T., Schelb A.J.H.C., Ferreira R., Manasses E.P. Control of the generated voltage by a three-phase induction generator self-excited by capacitors using control techniques. IEEE International Conference on Industrial Technology, 2003. doi: 10.1109/ICIT.2003.1290386.

Ahmed T., Nishida K., Soushin K., Nakaoka M. Static VAR compensator-based voltage control implementation of single-phase self- excited induction generator. IEE Proceedings - Generation, Transmission and Distribution, 2005, vol. 152, no. 2, pp. 145-156. doi: 10.1049/ip-gtd:20051251.

Shridhar L., Singh B., Jha C.S. Transient performance of the self regulated short-shunt self-excited induction generator. IEEE Transactions on Energy Conversion, 1995, vol. 10, no. 2, pp. 261-267. doi: 10.1109/60.391891.

Ojo O. Performance of self-excited single-phase induction generators with shunt, short-shunt and long-shunt excitation connections. IEEE Transactions on Energy Conversion, 1996, vol. 11, no. 3, pp. 477-482. doi: 10.1109/60.536996.

Fraile-Ardanuy J., Fraile-Mora J., Pedro A.G.G. Voltage control of isolated self-excited induction generator through series compensation. Przeglad Elektrotechniczny, 2012, no. 01a, pp. 132-136.

Abdelhamid B., Taoufik M., Lassad S. Shunt and short shunt compensation for induction machine generator. 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 2016. doi: 10.1109/STA.2016.7951989.

Jaswant S., Pawan K.Y., Abhishek K.C. Improvement in voltage profile in self excited induction generator using fuzzy logic. International Journal on Future Revolution in Computer Science & Communication Engineering (IJFRCSCE), 2018, vol. 4, no. 1, pp. 113-117.

Kasal G. Singh B. Decoupled voltage and frequency controller for isolated asynchronous generators feeding three- phase four-wire loads. IEEE Transactions on Power Delivery, 2008, vol. 23, no. 2, pp. 966-973. doi: 10.1109/TPWRD.2008.915783.

Rajagopal V., Singh B., Kasal G. Electronic load controller with power quality improvement of isolated induction generator for small hydro power generation. IET Renewable Power Generation, 2011, vol. 5, no. 2, pp. 202-213. doi: 10.1049/iet-rpg.2010.0081.

Silva F.B., da Silva Gonçalves F.A., Vanço W.O., de Carvalho D.P., Bissochi Jr C.A., Monteiro R.V.A., Guimarães G.C. Application of bidirectional switches in the development of a voltage regulator for self-excited induction generators. International Journal of Electrical Power & Energy Systems, 2018, vol. 98, no. 5, pp. 419-429. doi: 10.1016/j.ijepes.2017.12.025.

Seyoum D., Grantham C., Rahman M.F. The dynamic characteristics of an isolated self-excited induction generator driven by a wind turbine. IEEE Transaction on Industry Applications, 2003, vol. 39, no. 4, pp. 936-944. doi: 10.1109/TIA.2003.813738.


Пристатейна бібліографія ГОСТ


  1. AI Jabri A.K., Alolah A.I. Capacitance requirement for isolated self-excited induction generator. IEE Proceedings B Electric Power Applications, 1990, vol. 137, no. 3, pp. 154-159. doi: 10.1049/ip-b.1990.0016.
  2. Chan T.F. Capacitance requirements of self-excited induction generators. IEEE Transactions on Energy Conversion, 1993, vol. 8, no. 2, pp. 304-311. doi: 10.1109/60.222721.
  3. Harrington R.J., Bassiouny F.M.M. New approach to determine the critical capacitance for self-excited induction generators. IEEE Transactions on Energy Conversion, 1998, vol. 13, no. 3, pp. 244-249. doi: 10.1109/60.707603.
  4. Seyoum D., Rahman M.F. The dynamic characteristics of an isolated self-excited induction generator driven by a wind turbine. Industry Applications Society Annual Meeting (IAS), Conference Record of the IEEE. doi: 10.1109/IAS.2002.1042641.
  5. Sandhu K.S., Jain S.P. Steady state operation of self-excited induction generator with varying wind speeds. International Journal of Circuits, Systems and Signal Processing, 2008, vol. 2, no. 1, pp. 26-33.
  6. Haque M.H. A novel method of evaluating performance characteristics of a self-excited induction generator. IEEE Transactions on Energy Conversion, 2009, vol. 24, no. 2, pp. 358-365. doi: 10.1109/TEC.2009.2016124.
  7. Bhim S., Madhusudan S., Tandon A.K. Transient performance of series-compensated three-phase self-excited induction generator feeding dynamic loads. IEEE Transactions on Industry Applications, 2010, vol. 46, no. 4, pp. 1271-1280. doi: 10.1109/TIA.2010.2049556.
  8. Kheldoun A., Refoufi L., Khodja D.E. Analysis of the self-excited induction generator steady state performance using a new efficient algorithm. Electric Power Systems Research, 2012, vol. 86, no. 2, pp. 61-67. doi: 10.1016/j.epsr.2011.12.003.
  9. Haitao L., Lili C., Xiaodan Z., Yunxia L., Xuehu P. Build-up steady-state analysis of wind-driven self-excited induction generators. The Journal of Engineering, 2017, vol. 2017, no. 13, pp. 1383-1387. doi: 10.1049/joe.2017.0558.
  10. Elsharkawi M.A., Venkata S.S., Williams T.J., Butlar N.G. an adaptive power factor controller for three-phase induction generators. IEEE Transactions on Power Apparatus and Systems, 1985, vol. PAS-104, no. 7, pp. 1825-1831. doi: 10.1109/TPAS.1985.319219.
  11. MalikN.H., Al-Bahrani A.H. Influence of the terminal capacitor on the performance characteristics of a self-excited induction generator. IEE Proceedings C Generation, Transmission and Distribution, 1990, vol. 137, no. 2, pp. 168-173. doi: 10.1049/ip-c.1990.0022.
  12. Wang L., Dong-Jing L. Coordination Control of an AC-to-DC Converter and a Switched Excitation Capacitor Bank for an Autonomous Self-Excited Induction Generator in Renewable-Energy Systems. IEEE Transactions on Industry Applications, 2014, vol. 50, no. 4, pp. 2828-2836. doi: 10.1109/TIA.2014.2298555.
  13. Stuty K., Bhuvaneswari G. Voltage regulation of a stand-alone Three-phase SEIG feeding single-phase loads. IEEE Students' Conference on Electrical, Electronics and Computer Science, 2014, doi: 10.1109/SCEECS.2014.6804472.
  14. Mazurenko L.I., Dzhura O.V., Shevchuk S.P. Transients in a transistor-switched capacitor regulator of a stand-alone induction generator supplying a single-phase load. International Conference on Modern Electrical and Energy Systems (MEES), 2017. doi: 10.1109/MEES.2017.8248901.
  15. Benhacine T.Z.E., Nesba A., Mekhtoub S., Ibtiouen R. A balancing method for three-phase SEIG feeding a single-phase load by using switched capacitors. International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), 2018. doi: 10.1109/CISTEM.2018.8613410.
  16. de Resende J.T., Schelb A.J.H.C., Ferreira R., Manasses E.P. Control of the generated voltage by a three-phase induction generator self-excited by capacitors using control techniques. IEEE International Conference on Industrial Technology, 2003. doi: 10.1109/ICIT.2003.1290386.
  17. Ahmed T., Nishida K., Soushin K., Nakaoka M. Static VAR compensator-based voltage control implementation of single-phase self- excited induction generator. IEE Proceedings - Generation, Transmission and Distribution, 2005, vol. 152, no. 2, pp. 145-156. doi: 10.1049/ip-gtd:20051251.
  18. Shridhar L., Singh B., Jha C.S. Transient performance of the self regulated short-shunt self-excited induction generator. IEEE Transactions on Energy Conversion, 1995, vol. 10, no. 2, pp. 261-267. doi: 10.1109/60.391891.
  19. Ojo O. Performance of self-excited single-phase induction generators with shunt, short-shunt and long-shunt excitation connections. IEEE Transactions on Energy Conversion, 1996, vol. 11, no. 3, pp. 477-482. doi: 10.1109/60.536996.
  20. Fraile-Ardanuy J., Fraile-Mora J., Pedro A.G.G. Voltage control of isolated self-excited induction generator through series compensation. Przeglad Elektrotechniczny, 2012, no. 01a, pp. 132-136.
  21. Abdelhamid B., Taoufik M., Lassad S. Shunt and short shunt compensation for induction machine generator. 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 2016. doi: 10.1109/STA.2016.7951989.
  22. Jaswant S., Pawan K.Y., Abhishek K.C. Improvement in voltage profile in self excited induction generator using fuzzy logic. International Journal on Future Revolution in Computer Science & Communication Engineering (IJFRCSCE), 2018, vol. 4, no. 1, pp. 113-117.
  23. Kasal G. Singh B. Decoupled voltage and frequency controller for isolated asynchronous generators feeding three- phase four-wire loads. IEEE Transactions on Power Delivery, 2008, vol. 23, no. 2, pp. 966-973. doi: 10.1109/TPWRD.2008.915783.
  24. Rajagopal V., Singh B., Kasal G. Electronic load controller with power quality improvement of isolated induction generator for small hydro power generation. IET Renewable Power Generation, 2011, vol. 5, no. 2, pp. 202-213. doi: 10.1049/iet-rpg.2010.0081.
  25. Silva F.B., da Silva Gonçalves F.A., Vanço W.O., de Carvalho D.P., Bissochi Jr C.A., Monteiro R.V.A., Guimarães G.C. Application of bidirectional switches in the development of a voltage regulator for self-excited induction generators. International Journal of Electrical Power & Energy Systems, 2018, vol. 98, no. 5, pp. 419-429. doi: 10.1016/j.ijepes.2017.12.025.
  26. Seyoum D., Grantham C., Rahman M.F. The dynamic characteristics of an isolated self-excited induction generator driven by a wind turbine. IEEE Transaction on Industry Applications, 2003, vol. 39, no. 4, pp. 936-944. doi: 10.1109/TIA.2003.813738.

 





Copyright (c) 2020 L. Louze, O. Abdessemad, A.L. Nemmour, A. Khezzar


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2074–272X (Print)
ІSSN 2309–3404 (Online)