DOI: https://doi.org/10.20998/2074-272X.2020.3.09

AN ADAPTIVE HARMONIC COMPENSATION STRATEGY FOR THREE-PHASE SHUNT ACTIVE POWER FILTER BASED ON DOUBLE SECOND-ORDER GENERALIZED INTEGRATOR WITH PREFILTER

S. Kalkoul, H. Benalla, K. Nabti, R. Abdellatif

Анотація


Аннотация. В данной работе представлен простой адаптивный алгоритм предфильтрации, основанный на двойном обобщенном интеграторе с предфильтром второго порядка (DSOGI-WPF) для решения одного из вопросов качества электроэнергии. Данный алгоритм отвечает за определение опорных гармонических токов при контроле трехфазного фильтра шунта активной мощности (SAPF). Предложенный алгоритм используется дважды: для извлечения гармонических токов, создаваемых нелинейными нагрузками, и также является интересной частью оценки частоты и амплитуды основного напряжения при различных аномалиях, которые можно заметить по напряжению сети. Эффективность, точность и надежность предложенного метода подтверждаются при сбалансированном, несбалансированном и искаженном напряжении сети результатами моделирования и экспериментов, полученными при реализации SAPF в среде MATLAB-Simulink и платформе dSPACE 1104, соответственно. 

Ключові слова


обобщенный интегратор с предфильтром второго порядка (SOGI-WPF); фильтр шунта активной мощности (SAPF); гармонические токи; качество электроэнергии; двойной обобщенный интегратор с предфильтром второго порядка с фазовой синхронизацией (DSOGI-PLL-WPF)

Повний текст:

PDF ENG (English)

Посилання


Taskovski D., Koleva L., Milchevski A., Dimcev V. Near perfect reconstruction filter banks for power quality analysis. Metrology and Measurement Systems, 2013, vol. 20, no. 3, pp. 359-370. doi: 10.2478/mms-2013-0031.

Tugay D.V. The phase reactor inductance selection technique for power active filter. Electrical Engineering & Electromechanics, 2016, no. 6, pp. 31-38. doi: 10.20998/2074-272X.2016.6.06.

Patil K., Patel H.H. Modified SOGI based shunt active power filter to tackle various grid voltage abnormalities. Engineering Science and Technology, an International Journal, 2017, vol. 20, no. 5, pp. 1466-1474. doi: 10.1016/j.jestch.2017.10.004.

Naderi Y., Hosseini S.H., Ghassem Zadeh S., Mohammadi-Ivatloo B., Vasquez J.C., Guerrero J.M. An overview of power quality enhancement techniques applied to distributed generation in electrical distribution networks. Renewable and Sustainable Energy Reviews, 2018, vol. 93, pp. 201-214. doi: 10.1016/j.rser.2018.05.013.

Garcia Campanhol L.B., Oliveira da Silva S.A., Goedtel A. Application of shunt active power filter for harmonic reduction and reactive power compensation in three-phase four-wire systems. IET Power Electronics, 2014, vol. 7, no. 11, pp. 2825-2836. doi: 10.1049/iet-pel.2014.0027.

Soares V., Verdelho P., Marques G.D. An instantaneous active and reactive current component method for active filters. IEEE Transactions on Power Electronics, 2000, vol. 15, no. 4, pp. 660-669. doi: 10.1109/63.849036.

Sena K.V. Power Quality Improvement using Five Level Active Power Filter with SRF Control Technique. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2014, vol. 3, no. 7, pp. 10468-10476. doi: 10.15662/ijareeie.2014.0307012.

Akagi H., Kanazawa Y., Nabae A. Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Transactions on Industry Applications, 1984, vol. IA-20, no. 3, pp. 625-630. doi: 10.1109/TIA.1984.4504460.

Wang H., Li Q., Wu M. Investigation on a new algorithm for instantaneous reactive and harmonic currents detection applied to intensive nonlinear loads. IEEE Transactions on Power Delivery, 2007, vol. 22, no. 4, pp. 2312-2318. doi: 10.1109/TPWRD.2007.905379.

Qasim M., Kanjiya P., Khadkikar V. Artificial-Neural-Network-Based Phase-Locking Scheme for Active Power Filters. IEEE Transactions on Industrial Electronics, 2014, vol. 61, no. 8, pp. 3857-3866. doi: 10.1109/TIE.2013.2284132.

Bhattacharya A., Chakraborty C. A Shunt Active Power Filter With Enhanced Performance Using ANN-Based Predictive and Adaptive Controllers. IEEE Transactions on Industrial Electronics, 2011, vol. 58, no. 2, pp. 421-428. doi: 10.1109/TIE.2010.2070770.

Jarupula S., Mannam V.G.R., Vutlapalli N.R. Power quality improvement in distribution system using ANN based shunt active power filter. International Journal of Power Electronics and Drive Systems (IJPEDS), 2015, vol. 5, no. 4, pp. 568-575. doi: 10.11591/ijpeds.v5.i4.pp568-575.

Xiao C., Pei X., Y Liu., Lu Y., Wang C., Xu F. Adaptive harmonic current compensation method with SAPF based on SOGI. 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), 2018, pp. 1-6. doi: 10.1109/PEAC.2018.8590342.

Matas J., Castilla M., Miret J., García de Vicuña L., Guzman R. An adaptive prefiltering method to improve the speed/accuracy tradeoff of voltage sequence detection methods under adverse grid conditions. IEEE Transactions on Industrial Electronics, 2014, vol. 61, no. 5, pp. 2139-2151. doi: 10.1109/TIE.2013.2274414.

Li W., Ruan X., Bao C., Pan D., Wang X. Grid synchronization systems of three-phase grid-connected power converters: a complex-vector-filter perspective. IEEE Transactions on Industrial Electronics, 2014, vol. 61, no. 4, pp. 1855-1870. doi: 10.1109/TIE.2013.2262762.

Yada H.K., Murthy M.S.R., Prakash K. A Novel Control Algorithm for DSTATCOM Based on Three-Phase Dual SO-SOGI-PLL under Non-Ideal Grid Voltage Conditions Including DC-Offset. International Journal of Applied Engineering Research, 2017, vol. 12, no 10, pp. 2480-2488.

Chilipi R., Al Sayari N., Al Hosani K., Fasil M., Beig A.R. Third order sinusoidal integrator (TOSSI)-based control algorithm for shunt active power filter under distorted and unbalanced voltage conditions. International Journal of Electrical Power & Energy Systems, 2018, vol. 96, pp. 152-162. doi: 10.1016/j.ijepes.2017.09.026.


Пристатейна бібліографія ГОСТ


  1. Taskovski D., Koleva L., Milchevski A., Dimcev V. Near perfect reconstruction filter banks for power quality analysis. Metrology and Measurement Systems, 2013, vol. 20, no. 3, pp. 359-370. doi: 10.2478/mms-2013-0031.
  2. Tugay D.V. The phase reactor inductance selection technique for power active filter. Electrical Engineering & Electromechanics, 2016, no. 6, pp. 31-38. doi: 10.20998/2074-272X.2016.6.06.
  3. Patil K., Patel H.H. Modified SOGI based shunt active power filter to tackle various grid voltage abnormalities. Engineering Science and Technology, an International Journal, 2017, vol. 20, no. 5, pp. 1466-1474. doi: 10.1016/j.jestch.2017.10.004.
  4. Naderi Y., Hosseini S.H., Ghassem Zadeh S., Mohammadi-Ivatloo B., Vasquez J.C., Guerrero J.M. An overview of power quality enhancement techniques applied to distributed generation in electrical distribution networks. Renewable and Sustainable Energy Reviews, 2018, vol. 93, pp. 201-214. doi: 10.1016/j.rser.2018.05.013.
  5. Garcia Campanhol L.B., Oliveira da Silva S.A., Goedtel A. Application of shunt active power filter for harmonic reduction and reactive power compensation in three-phase four-wire systems. IET Power Electronics, 2014, vol. 7, no. 11, pp. 2825-2836. doi: 10.1049/iet-pel.2014.0027.
  6. Soares V., Verdelho P., Marques G.D. An instantaneous active and reactive current component method for active filters. IEEE Transactions on Power Electronics, 2000, vol. 15, no. 4, pp. 660-669. doi: 10.1109/63.849036.
  7. Sena K.V. Power Quality Improvement using Five Level Active Power Filter with SRF Control Technique. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2014, vol. 3, no. 7, pp. 10468-10476. doi: 10.15662/ijareeie.2014.0307012.
  8. Akagi H., Kanazawa Y., Nabae A. Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Transactions on Industry Applications, 1984, vol. IA-20, no. 3, pp. 625-630. doi: 10.1109/TIA.1984.4504460.
  9. Wang H., Li Q., Wu M. Investigation on a new algorithm for instantaneous reactive and harmonic currents detection applied to intensive nonlinear loads. IEEE Transactions on Power Delivery, 2007, vol. 22, no. 4, pp. 2312-2318. doi: 10.1109/TPWRD.2007.905379.
  10. Qasim M., Kanjiya P., Khadkikar V. Artificial-Neural-Network-Based Phase-Locking Scheme for Active Power Filters. IEEE Transactions on Industrial Electronics, 2014, vol. 61, no. 8, pp. 3857-3866. doi: 10.1109/TIE.2013.2284132.
  11. Bhattacharya A., Chakraborty C. A Shunt Active Power Filter With Enhanced Performance Using ANN-Based Predictive and Adaptive Controllers. IEEE Transactions on Industrial Electronics, 2011, vol. 58, no. 2, pp. 421-428. doi: 10.1109/TIE.2010.2070770.
  12. Jarupula S., Mannam V.G.R., Vutlapalli N.R. Power quality improvement in distribution system using ANN based shunt active power filter. International Journal of Power Electronics and Drive Systems (IJPEDS), 2015, vol. 5, no. 4, pp. 568-575. doi: 10.11591/ijpeds.v5.i4.pp568-575.
  13. Xiao C., Pei X., Y Liu., Lu Y., Wang C., Xu F. Adaptive harmonic current compensation method with SAPF based on SOGI. 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), 2018, pp. 1-6. doi: 10.1109/PEAC.2018.8590342.
  14. Matas J., Castilla M., Miret J., García de Vicuña L., Guzman R. An adaptive prefiltering method to improve the speed/accuracy tradeoff of voltage sequence detection methods under adverse grid conditions. IEEE Transactions on Industrial Electronics, 2014, vol. 61, no. 5, pp. 2139-2151. doi: 10.1109/TIE.2013.2274414.
  15. Li W., Ruan X., Bao C., Pan D., Wang X. Grid synchronization systems of three-phase grid-connected power converters: a complex-vector-filter perspective. IEEE Transactions on Industrial Electronics, 2014, vol. 61, no. 4, pp. 1855-1870. doi: 10.1109/TIE.2013.2262762.
  16. Yada H.K., Murthy M.S.R., Prakash K. A Novel Control Algorithm for DSTATCOM Based on Three-Phase Dual SO-SOGI-PLL under Non-Ideal Grid Voltage Conditions Including DC-Offset. International Journal of Applied Engineering Research, 2017, vol. 12, no 10, pp. 2480-2488.
  17. Chilipi R., Al Sayari N., Al Hosani K., Fasil M., Beig A.R. Third order sinusoidal integrator (TOSSI)-based control algorithm for shunt active power filter under distorted and unbalanced voltage conditions. International Journal of Electrical Power & Energy Systems, 2018, vol. 96, pp. 152-162. doi: 10.1016/j.ijepes.2017.09.026.

 





Copyright (c) 2020 S. Kalkoul, H. Benalla, K. Nabti, R. Abdellatif


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2074–272X (Print)
ІSSN 2309–3404 (Online)