DOI: https://doi.org/10.20998/2074-272X.2020.3.08

SENSORLESS DIRECT POWER CONTROL FOR THREE-PHASE GRID SIDE CONVERTER INTEGRATED INTO WIND TURBINE SYSTEM UNDER DISTURBED GRID VOLTAGES

I. Boukhechem, A. Boukadoum, L. Boukelkoul, R. Lebied

Анотація


Ветряные турбины с синхронным генератором на постоянных магнитах (PMSG) широко используются в качестве источников энергии, подключенных к сети. Исследуемая система состоит из ветряной турбины на основе PMSG, мостового выпрямителя, повышающего преобразователя и управляемого инвертора для устранения гармоник низкого порядка в токах сетки при возмущениях напряжения сети. Традиционно преобразователь на стороне сети управляется с помощью виртуального потокоориентированного управления VFOC (Virtual Flux Oriented Control), который разделяет трехфазные токи на косвенные компоненты (id) и на квадратичные компоннеты (iq) и регулирует их отдельно. Однако подход VFOC зависит от параметров системы. Данная статья иллюстрирует новую схему для контроллера преобразователя, подключенного к сети. Дисбаланс напряжения и содержание гармоник в трехфазной системе напряжения вызывают искажения тока. Следовательно, синхронизация с сетью является важной особенностью управления преобразователем напряжения. Таким образом, надежный метод управления необходим для поддержания адекватной подачи энергии во время неисправностей и/или значительно искаженного напряжения сети. Предложенная новая стратегия управления заключается в использовании виртуального потока на основе прямого управления мощностью для устранения побочных эффектов, вызванных помехами в сети. Этот метод управления значительно снижает колебания активной и реактивной мощности и уровень гармонических искажений. Оценочные мощности, используемые в предлагаемом подходе к управлению, рассчитываются непосредственно по положительным, отрицательным и гармоническим элементам оцененного потока и измеренного тока без напряжения линейного датчика.

Ключові слова


виртуальный поток на основе прямого управления мощностью; возмущения напряжения сети; синхронный генератор с постоянными магнитами

Повний текст:

PDF ENG (English)

Посилання


Mendis N., Muttaqi K.M., Sayeef S., Perera S. Standalone Operation of Wind Turbine-Based Variable Speed Generators With Maximum Power Extraction Capability,” IEEE Transactions on Energy Conversion, vol. 27, no. 4, pp. 822–834, Dec. 2012. doi: 10.1109/tec.2012.2206594.

Barote L., Marinescu C., Cirstea M.N. Control Structure for Single-Phase Stand-Alone Wind-Based Energy Sources. IEEE Transactions on Industrial Electronics, 2013, vol. 60, no. 2, pp. 764-772. doi: 10.1109/tie.2012.2206346.

Zammit D., StainesC.S., Micallef A., Apap M., Licari J. Incremental Current Based MPPT for a PMSG Micro Wind Turbine in a Grid-Connected DC Microgrid. Energy Procedia, 2017, vol. 142, pp. 2284-2294. doi: 10.1016/j.egypro.2017.12.631.

Venkatraman R., Bhat A. K. S. Large-signal transient analysis of a soft-switching, two-switch AC-to-DC converter. IEE Proceedings - Circuits, Devices and Systems, 2000, vol. 147, no. 2, pp. 146-152. doi: 10.1049/ip-cds:20000177.

Razali A.M., Rahman M.A. Virtual grid flux oriented control method for front-end three phase boost type voltage source rectifier. 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Montreal, Quebec, Canada, Apr. 2012. doi: 10.1109/ccece.2012.6334922.

Dannehl J., Wessels C., Fuchs F.W. Limitations of Voltage-Oriented PI Current Control of Grid-Connected PWM Rectifiers With LCL Filters. IEEE Transactions on Industrial Electronics, 2009, vol. 56, no. 2, pp. 380-388. doi: 10.1109/tie.2008.2008774.

Xu Lie, Zhi Dawei, Williams B.W. Predictive Current Control of Doubly Fed Induction Generators. IEEE Transactions on Industrial Electronics, 2009, vol. 56, no. 10, pp. 4143-4153. doi: 10.1109/tie.2009.2017552.

Lorenz R.D., Lipo T.A., Novotny D.W. Motion control with induction motors. Proceedings of the IEEE, 1994, vol. 82, no. 8, pp. 1215-1240. doi: 10.1109/5.301685.

Lee S.S., Heng Y.E. Table-based DPC for grid connected VSC under unbalanced and distorted grid voltages: Review and optimal method. Renewable and Sustainable Energy Reviews, 2017, vol. 76, pp. 51-61. doi: 10.1016/j.rser.2017.03.033.

Malinowski M. Sensorless Control Strategies for Three-Phase PWM Rectifiers.Ph.D.ThesisWarsawUniversity of Technology Faculty of Electrical Engineering Institute of Control and Industrial Electronics.Warsaw,Poland, 2001.

Zheng Z., Wang C. Research on Direct Power Control Strategy for PWM Rectifier. 2010 International Conference on Future Power and Energy Engineering, Jun. 2010. doi: 10.1109/ICFPEE.2010.30.

Lauria D., Coppola M. Design and control of an advanced PV inverter. Solar Energy, 2014, vol. 110, pp. 533-542. doi: 10.1016/j.solener.2014.09.040.

Hussein M.M., Senjyu T., Orabi M., Wahab M.A.A., Hamada M.M. Load power management control for a stand alone wind energy system based on the state of charge of the battery. 2012 IEEE International Conference on Power and Energy (PECon), Dec. 2012. doi: 10.1109/pecon.2012.6450352.

European Standard EN 50160. Voltage characteristics of electricity supplied by public distribution systems. CENELEC, 2005.

IEEE Std 519-1992. IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, 1993, 112 p. doi: 10.1109/IEEESTD.1993.114370.

Allagui M., Hasnaoui O.B.k., Belhadj J. A 2MW direct drive wind turbine; vector control and direct torque control techniques comparison. Journal of Energy in Southern Africa, 2017, vol. 25, no. 2, pp. 117-126. doi: 10.17159/2413-3051/2014/v25i2a2679.

Prasad A.R., Ziogas P.D., Manias S. An active power factor correction technique for three-phase diode rectifiers. IEEE Transactions on Power Electronics, 1991, vol. 6, no. 1, pp. 83-92. doi: 10.1109/63.65006.

Mohd Yusoff N.A., Razali A.M., Abdul Karim K., Sutikno T., Jidin A. A Concept of Virtual-Flux Direct Power Control of Three-Phase AC-DC Converter. International Journal of Power Electronics and Drive Systems (IJPEDS), 2017, vol. 8, no. 4, pp. 1776-1784. doi: 10.11591/ijpeds.v8.i4.pp1776-1784.

Verdelho P., Marques G.D. DC voltage control and stability analysis of PWM-voltage-type reversible rectifiers IEEE Transactions on Industrial Electronics, 1998, vol. 45, no. 2, pp. 263-273. doi: 10.1109/41.681225.

Xiang L., Minxiao H. Direct Virtual Power Control. Telkomnika, 2014, vol. 12, no. 7, pp. 5144-5153 doi: 10.11591/telkomnika.v12i7.5806.

Malinowski M., Kazmierkowski M. Simple Direct Power Control of Three-Phase PWM Rectifier Using Space Vector Modulation – A Comparative Study. EPE Journal, 2003, vol. 13, no. 2, pp. 28-34. doi: 10.1080/09398368.2003.11463529.

Malinowski M., Kazmierkowski M.P., Hansen S., Blaabjerg F., Marques G.D. Virtual-flux-based direct power control of three-phase PWM rectifiers. IEEE Transactions on Industry Applications, 2001, vol. 37, no. 4, pp. 1019-1027. doi: 10.1109/28.936392.

Rahab A., Senani F., Benalla H. Direct Power Control of Three-Phase PWM Rectifier based DSOGI-VF Estimator for No-Ideal LineVoltages Conditions. Int. Journal of Engineering Research and Application, 2018, vol. 8, iss. 1 (part-1), pp. 10-18. doi: 10.9790/9622-0801011018.

Bouafia A., Gaubert J.P., Chaoui A. Direct Power Control Scheme Based on Disturbance Rejection Principle for Three-Phase PWM AC/DC Converter under Different Input Voltage Conditions. Journal of Electrical Systems, 2012, vol. 8, iss. 4, pp. 367-383.

Suul J.A., Undeland T. Impact of Virtual Flux reference frame orientation on voltage source inverters in weak grids. The 2010 International Power Electronics Conference – ECCE ASIA, Jun. 2010. doi: 10.1109/ipec.2010.5542230.

Malinowski M., Kazmierkowski M.P., Hansen S., Blaabjerg F., Marques G.D. Virtual-flux-based direct power control of three-phase PWM rectifiers. IEEE Transactions on Industry Applications, 2001, vol. 37, no. 4, pp. 1019-1027. doi: 10.1109/28.936392.

Haque M.E., Negnevitsky M., Muttaqi K.M. A Novel Control Strategy for a Variable Speed Wind Turbine with a Permanent Magnet Synchronous Generator. 2008 IEEE Industry Applications Society Annual Meeting, Oct. 2008. doi: 10.1109/08ias.2008.374.


Пристатейна бібліографія ГОСТ


  1. Mendis N., Muttaqi K.M., Sayeef S., Perera S. Standalone Operation of Wind Turbine-Based Variable Speed Generators With Maximum Power Extraction Capability,” IEEE Transactions on Energy Conversion, vol. 27, no. 4, pp. 822–834, Dec. 2012. doi: 10.1109/tec.2012.2206594.
  2. Barote L., Marinescu C., Cirstea M.N. Control Structure for Single-Phase Stand-Alone Wind-Based Energy Sources. IEEE Transactions on Industrial Electronics, 2013, vol. 60, no. 2, pp. 764-772. doi: 10.1109/tie.2012.2206346.
  3. Zammit D., StainesC.S., Micallef A., Apap M., Licari J. Incremental Current Based MPPT for a PMSG Micro Wind Turbine in a Grid-Connected DC Microgrid. Energy Procedia, 2017, vol. 142, pp. 2284-2294. doi: 10.1016/j.egypro.2017.12.631.
  4. Venkatraman R., Bhat A. K. S. Large-signal transient analysis of a soft-switching, two-switch AC-to-DC converter. IEE Proceedings - Circuits, Devices and Systems, 2000, vol. 147, no. 2, pp. 146-152. doi: 10.1049/ip-cds:20000177.
  5. Razali A.M., Rahman M.A. Virtual grid flux oriented control method for front-end three phase boost type voltage source rectifier. 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Montreal, Quebec, Canada, Apr. 2012. doi: 10.1109/ccece.2012.6334922.
  6. Dannehl J., Wessels C., Fuchs F.W. Limitations of Voltage-Oriented PI Current Control of Grid-Connected PWM Rectifiers With LCL Filters. IEEE Transactions on Industrial Electronics, 2009, vol. 56, no. 2, pp. 380-388. doi: 10.1109/tie.2008.2008774.
  7. Xu Lie, Zhi Dawei, Williams B.W. Predictive Current Control of Doubly Fed Induction Generators. IEEE Transactions on Industrial Electronics, 2009, vol. 56, no. 10, pp. 4143-4153. doi: 10.1109/tie.2009.2017552.
  8. Lorenz R.D., Lipo T.A., Novotny D.W. Motion control with induction motors. Proceedings of the IEEE, 1994, vol. 82, no. 8, pp. 1215-1240. doi: 10.1109/5.301685.
  9. Lee S.S., Heng Y.E. Table-based DPC for grid connected VSC under unbalanced and distorted grid voltages: Review and optimal method. Renewable and Sustainable Energy Reviews, 2017, vol. 76, pp. 51-61. doi: 10.1016/j.rser.2017.03.033.
  10. Malinowski M. Sensorless Control Strategies for Three-Phase PWM Rectifiers.Ph.D.ThesisWarsawUniversity of Technology Faculty of Electrical Engineering Institute of Control and Industrial Electronics.Warsaw,Poland, 2001.
  11. Zheng Z., Wang C. Research on Direct Power Control Strategy for PWM Rectifier. 2010 International Conference on Future Power and Energy Engineering, Jun. 2010. doi: 10.1109/ICFPEE.2010.30.
  12. Lauria D., Coppola M. Design and control of an advanced PV inverter. Solar Energy, 2014, vol. 110, pp. 533-542. doi: 10.1016/j.solener.2014.09.040.
  13. Hussein M.M., Senjyu T., Orabi M., Wahab M.A.A., Hamada M.M. Load power management control for a stand alone wind energy system based on the state of charge of the battery. 2012 IEEE International Conference on Power and Energy (PECon), Dec. 2012. doi: 10.1109/pecon.2012.6450352.
  14. European Standard EN 50160. Voltage characteristics of electricity supplied by public distribution systems. CENELEC, 2005.
  15. IEEE Std 519-1992. IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, 1993, 112 p. doi: 10.1109/IEEESTD.1993.114370.
  16. Allagui M., Hasnaoui O.B.k., Belhadj J. A 2MW direct drive wind turbine; vector control and direct torque control techniques comparison. Journal of Energy in Southern Africa, 2017, vol. 25, no. 2, pp. 117-126. doi: 10.17159/2413-3051/2014/v25i2a2679.
  17. Prasad A.R., Ziogas P.D., Manias S. An active power factor correction technique for three-phase diode rectifiers. IEEE Transactions on Power Electronics, 1991, vol. 6, no. 1, pp. 83-92. doi: 10.1109/63.65006.
  18. Mohd Yusoff N.A., Razali A.M., Abdul Karim K., Sutikno T., Jidin A. A Concept of Virtual-Flux Direct Power Control of Three-Phase AC-DC Converter. International Journal of Power Electronics and Drive Systems (IJPEDS), 2017, vol. 8, no. 4, pp. 1776-1784. doi: 10.11591/ijpeds.v8.i4.pp1776-1784.
  19. Verdelho P., Marques G.D. DC voltage control and stability analysis of PWM-voltage-type reversible rectifiers IEEE Transactions on Industrial Electronics, 1998, vol. 45, no. 2, pp. 263-273. doi: 10.1109/41.681225.
  20. Xiang L., Minxiao H. Direct Virtual Power Control. Telkomnika, 2014, vol. 12, no. 7, pp. 5144-5153 doi: 10.11591/telkomnika.v12i7.5806.
  21. Malinowski M., Kazmierkowski M. Simple Direct Power Control of Three-Phase PWM Rectifier Using Space Vector Modulation – A Comparative Study. EPE Journal, 2003, vol. 13, no. 2, pp. 28-34. doi: 10.1080/09398368.2003.11463529.
  22. Malinowski M., Kazmierkowski M.P., Hansen S., Blaabjerg F., Marques G.D. Virtual-flux-based direct power control of three-phase PWM rectifiers. IEEE Transactions on Industry Applications, 2001, vol. 37, no. 4, pp. 1019-1027. doi: 10.1109/28.936392.
  23. Rahab A., Senani F., Benalla H. Direct Power Control of Three-Phase PWM Rectifier based DSOGI-VF Estimator for No-Ideal LineVoltages Conditions. Int. Journal of Engineering Research and Application, 2018, vol. 8, iss. 1 (part-1), pp. 10-18. doi: 10.9790/9622-0801011018.
  24. Bouafia A., Gaubert J.P., Chaoui A. Direct Power Control Scheme Based on Disturbance Rejection Principle for Three-Phase PWM AC/DC Converter under Different Input Voltage Conditions. Journal of Electrical Systems, 2012, vol. 8, iss. 4, pp. 367-383.
  25. Suul J.A., Undeland T. Impact of Virtual Flux reference frame orientation on voltage source inverters in weak grids. The 2010 International Power Electronics Conference – ECCE ASIA, Jun. 2010. doi: 10.1109/ipec.2010.5542230.
  26. Malinowski M., Kazmierkowski M.P., Hansen S., Blaabjerg F., Marques G.D. Virtual-flux-based direct power control of three-phase PWM rectifiers. IEEE Transactions on Industry Applications, 2001, vol. 37, no. 4, pp. 1019-1027. doi: 10.1109/28.936392.
  27. Haque M.E., Negnevitsky M., Muttaqi K.M. A Novel Control Strategy for a Variable Speed Wind Turbine with a Permanent Magnet Synchronous Generator. 2008 IEEE Industry Applications Society Annual Meeting, Oct. 2008. doi: 10.1109/08ias.2008.374.




Copyright (c) 2020 I. Boukhechem, A. Boukadoum, L. Boukelkoul, R. Lebied


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2074–272X (Print)
ІSSN 2309–3404 (Online)