DOI: https://doi.org/10.20998/2074-272X.2020.2.11

OPTIMAL FREQUENCY CONTROL IN MICROGRID SYSTEM USING FRACTIONAL ORDER PID CONTROLLER USING KRILL HERD ALGORITHM

M. Regad, M. Helaimi, R. Taleb, H. Gabbar, A. Othman

Анотація


Анотація. У статті досліджено використання регуляторів пропорційного, інтегрального та похідного дробового порядку (FOPID) для регулювання частоти та потужності в електромережі. Запропонована мікромережева система складається з поновлюваних джерел енергії, таких як сонячні та вітрогенератори, дизельних генераторів як вторинного джерела для підтримки основних генераторів, а також з різних пристроїв для накопичування енергії, таких як паливна батарея, акумулятор і маховик. Через переривчасту природу інтегрованої відновлювальної енергії, наприклад, вітрогенераторів та фотоелектричних генераторів, які залежать від погодних умов та зміни клімату, це впливає на стабільність мікромережі, враховуючи коливання частоти та відхилення потужності, які можна поліпшити за допомогою вибраного контролера. Контролер дробового порядку має п’ять параметрів порівняно з класичним PID-контролером, що робить його більш гнучким та надійним щодо збурень мікромережі. Параметри PID-контролера дробового порядку оптимізовані за допомогою нової методики оптимізації під назвою «зграя криля», яка обрана як підходящий метод оптимізації порівняно з іншими методами, такими як оптимізація методом рою частинок. Результати показують кращі показники роботи цієї системи за допомогою алгоритму «зграя криля», заснованого на PID-контролері дробового порядку, виключаючи коливання частоти та відхилення потужності порівняно з класичним PID-контролером. Отримані результати порівнюються з PID-контролером дробового порядку, оптимізованим за допомогою оптимізації методом рою частинок. Запропонована система моделюється в номінальному режимі роботи та використовує відключення накопичувальних пристроїв, таких як акумулятор та маховик, щоб перевірити надійність запропонованих методів та порівняти отримані результати.

Ключові слова


мікромережа; регулювання частоти; FOPID-контролер; метод «зграя криля»; оптимізація методом рою частинок

Повний текст:

PDF ENG (English)

Посилання


Lee D.-J., Wang L. Small-Signal Stability Analysis of an Autonomous Hybrid Renewable Energy Power Generation/Energy Storage System Part I: Time-Domain Simulations. IEEE Transactions on Energy Conversion, 2008, vol. 23, no. 1, pp. 311-320. doi: 10.1109/tec.2007.914309.

De Souza Ribeiro L.A., Saavedra O.R., De Lima S.L., De Matos J. Isolated Micro-Grids With Renewable Hybrid Generation: The Case of LençóisIsland. IEEE Transactions on Sustainable Energy, 2011, vol. 2, no. 1, pp. 1-11. doi: 10.1109/tste.2010.2073723.

Kouba N.EL.Y., Menaa M., Hasni M., Boussahoua B., Boudour M. Automatic generation control in interconnected power System with integration of wind power generation using PID based on particle swarm optimization. International Conference on Renewable Energies and Power Quality (ICREPQ'14),Cordoba (Spain), 8-10 April 2014.

Senjyu T., Nakaji T., Uezato K., FunabashiT. A hybrid power system using alternative energy facilities in isolated island. IEEE Transactions on Energy Conversion, 2005, vol. 20, no. 2, pp. 406-414. doi: 10.1109/tec.2004.837275.

PanI., Das S. Krigingbased surrogate modeling for fractional order control of microgrids. IEEE Transactions on Smart Grid, 2015, vol. 6, no. 1, pp. 36-44. doi: 10.1109/tsg.2014.2336771.

PanI., Das S. Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Transactions, 2016, vol. 62, pp. 19-29. doi: 10.1016/j.isatra.2015.03.003.

Das D.Ch., Roy A.K., Sinha N. Genetic algorithm based PI controller for frequency control of an autonomous hybrid generation system. Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS 2011), 2011, vol. 2, 16-18 March, 2011,Hong Kong.

Regad M., Helaimi M., Taleb R., Gabbar H.A., Othman A.M.Fractional Order PID Control of Hybrid Power System with Renewable Generation Using Genetic Algorithm. 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE), Aug. 2019, Oshawa, ON, Canada, pp. 139-144. doi: 10.1109/sege.2019.8859970.

Pandey S.K., Mohanty S.R., Kishor N., Catalão J.P.S. Frequency regulation in hybrid power systems using particle swarm optimization and linear matrix inequalities based robust controller design. International Journal of Electrical Power & Energy Systems, 2014, vol. 63, pp. 887-900. doi: 10.1016/j.ijepes.2014.06.062.

Regad M., Helaimi M., Taleb R., Toubal Maamar A.E. Optimum Synthesis of the PID Controller Parameters for Frequency Control in Microgrid Based Renewable Generations. Smart Energy Empowerment in Smart and Resilient Cities, 2019, pp. 546-556. doi: 10.1007/978-3-030-37207-1_58.

Wang L., Lee D.-J., Lee W.-J., Chen Z. Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link. Journal of Power Sources, 2008, vol. 185, no. 2, pp. 1284-1292.‏ doi: 10.1016/j.jpowsour.2008.08.037.

Biswas A., Das S., Abraham A., Dasgupta S. Design of fractional-order PIλDμ controllers with an improved differential evolution. Engineering Applications of Artificial Intelligence, 2009, vol. 22, no. 2, pp. 343-350. doi: 10.1016/j.engappai.2008.06.003.

Gandomi A.H., Alavi A.H. Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 2012, vol. 17, no. 12, pp. 4831-4845. doi: 10.1016/j.cnsns.2012.05.010.

Gandomi A.H., Talatahari S., Tadbiri F., Alavi A.H. Krill herd algorithm for optimum design of truss structures. International Journal of Bio-Inspired Computation, 2013, vol. 5, no. 5, pp. 281-288. doi: 10.1504/ijbic.2013.057191.

Yaghoobi S., Mojallali H. Tuning of a PID controller using improved chaotic Krill Herd algorithm. Optik, 2016, vol. 127, no. 11, pp. 4803-4807. doi: 10.1016/j.ijleo.2016.01.055.‏

Alikhani A., Suratgar A.A., Nouri K., Nouredanesh M., Salimi S. Optimal PID tuning based on Krill Herd optimization algorithm. The 3rd International Conference on Control, Instrumentation, and Automation, Dec. 2013. doi: 10.1109/icciautom.2013.6912801.

Regad M., Helaimi M., Taleb R., Othman A.M., Gabbar H.A. Frequency Control in Microgrid Power System with Renewable Power Generation Using PID Controller Based on Particle Swarm Optimization. Smart Energy Empowerment in Smart and Resilient Cities, 2019, pp. 3-13. doi: 10.1007/978-3-030-37207-1_1.

Iruthayarajan M.W., Baskar S. Evolutionary algorithms based design of multivariable PID controller. Expert Systems with Applications, 2009, vol. 36, no. 5, pp. 9159-9167. doi: 10.1016/j.eswa.2008.12.033.


Пристатейна бібліографія ГОСТ


  1. Lee D.-J., Wang L. Small-Signal Stability Analysis of an Autonomous Hybrid Renewable Energy Power Generation/Energy Storage System Part I: Time-Domain Simulations. IEEE Transactions on Energy Conversion, 2008, vol. 23, no. 1, pp. 311-320. doi: 10.1109/tec.2007.914309.
  2. De Souza Ribeiro L.A., Saavedra O.R., De Lima S.L., De Matos J. Isolated Micro-Grids With Renewable Hybrid Generation: The Case of LençóisIsland. IEEE Transactions on Sustainable Energy, 2011, vol. 2, no. 1, pp. 1-11. doi: 10.1109/tste.2010.2073723.
  3. Kouba N.EL.Y., Menaa M., Hasni M., Boussahoua B., Boudour M. Automatic generation control in interconnected power System with integration of wind power generation using PID based on particle swarm optimization. International Conference on Renewable Energies and Power Quality (ICREPQ'14),Cordoba (Spain), 8-10 April 2014.
  4. Senjyu T., Nakaji T., Uezato K., FunabashiT. A hybrid power system using alternative energy facilities in isolated island. IEEE Transactions on Energy Conversion, 2005, vol. 20, no. 2, pp. 406-414. doi: 10.1109/tec.2004.837275.
  5. PanI., Das S. Krigingbased surrogate modeling for fractional order control of microgrids. IEEE Transactions on Smart Grid, 2015, vol. 6, no. 1, pp. 36-44. doi: 10.1109/tsg.2014.2336771.
  6. PanI., Das S. Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Transactions, 2016, vol. 62, pp. 19-29. doi: 10.1016/j.isatra.2015.03.003.
  7. Das D.Ch., Roy A.K., Sinha N. Genetic algorithm based PI controller for frequency control of an autonomous hybrid generation system. Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS 2011), 2011, vol. 2, 16-18 March, 2011,Hong Kong.
  8. Regad M., Helaimi M., Taleb R., Gabbar H.A., Othman A.M.Fractional Order PID Control of Hybrid Power System with Renewable Generation Using Genetic Algorithm. 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE), Aug. 2019, Oshawa, ON, Canada, pp. 139-144. doi: 10.1109/sege.2019.8859970.
  9. Pandey S.K., Mohanty S.R., Kishor N., Catalão J.P.S. Frequency regulation in hybrid power systems using particle swarm optimization and linear matrix inequalities based robust controller design. International Journal of Electrical Power & Energy Systems, 2014, vol. 63, pp. 887-900. doi: 10.1016/j.ijepes.2014.06.062.
  10. Regad M., Helaimi M., Taleb R., Toubal Maamar A.E. Optimum Synthesis of the PID Controller Parameters for Frequency Control in Microgrid Based Renewable Generations. Smart Energy Empowerment in Smart and Resilient Cities, 2019, pp. 546-556. doi: 10.1007/978-3-030-37207-1_58.
  11. Wang L., Lee D.-J., Lee W.-J., Chen Z. Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link. Journal of Power Sources, 2008, vol. 185, no. 2, pp. 1284-1292.‏ doi: 10.1016/j.jpowsour.2008.08.037.
  12. Biswas A., Das S., Abraham A., Dasgupta S. Design of fractional-order PIλDμ controllers with an improved differential evolution. Engineering Applications of Artificial Intelligence, 2009, vol. 22, no. 2, pp. 343-350. doi: 10.1016/j.engappai.2008.06.003.
  13. Gandomi A.H., Alavi A.H. Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 2012, vol. 17, no. 12, pp. 4831-4845. doi: 10.1016/j.cnsns.2012.05.010.
  14. Gandomi A.H., Talatahari S., Tadbiri F., Alavi A.H. Krill herd algorithm for optimum design of truss structures. International Journal of Bio-Inspired Computation, 2013, vol. 5, no. 5, pp. 281-288. doi: 10.1504/ijbic.2013.057191.
  15. Yaghoobi S., Mojallali H. Tuning of a PID controller using improved chaotic Krill Herd algorithm. Optik, 2016, vol. 127, no. 11, pp. 4803-4807. doi: 10.1016/j.ijleo.2016.01.055.‏
  16. Alikhani A., Suratgar A.A., Nouri K., Nouredanesh M., Salimi S. Optimal PID tuning based on Krill Herd optimization algorithm. The 3rd International Conference on Control, Instrumentation, and Automation, Dec. 2013. doi: 10.1109/icciautom.2013.6912801.
  17. Regad M., Helaimi M., Taleb R., Othman A.M., Gabbar H.A. Frequency Control in Microgrid Power System with Renewable Power Generation Using PID Controller Based on Particle Swarm Optimization. Smart Energy Empowerment in Smart and Resilient Cities, 2019, pp. 3-13. doi: 10.1007/978-3-030-37207-1_1.
  18. Iruthayarajan M.W., Baskar S. Evolutionary algorithms based design of multivariable PID controller. Expert Systems with Applications, 2009, vol. 36, no. 5, pp. 9159-9167. doi: 10.1016/j.eswa.2008.12.033.

 

 

 

 





Copyright (c) 2020 Mohamed REGAD, M’hamed HELAIMI, Rachid TALEB, Hossam GABBAR, Ahmed OTHMAN


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2074–272X (Print)
ІSSN 2309–3404 (Online)