DOI: https://doi.org/10.20998/2074-272X.2020.2.02

ХАРАКТЕРИСТИКИ ЦИЛИНДРИЧЕСКОГО ИНДУКТОРА ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ ТЕХНОЛОГИЧЕСКОГО НАЗНАЧЕНИЯ ПРИ ЕГО ПИТАНИИ ОТ СЕТИ С ЗАДАННЫМ НАПРЯЖЕНИЕМ

V. I. Milykh, L. V. Shilkova

Анотація


Представлен расчетный анализ характеристик индуктора вращающегося магнитного поля технологического назначения. Конструкция его статора заимствована у трехфазного асинхронного двигателя. Цилиндрическая полость внутри статора занята рабочей камерой, в которую загружается сыпучее или жидкое обрабатываемое вещество. Обработка происходит движущимися с магнитным полем продолговатыми ферромагнитными элементами. Изложена методика получения электрических, магнитных и энергетических величин индуктора, основанная на численно-полевых расчетах с учетом магнитной анизотропии среды, заполняющей рабочую камеру. Взаимные зависимости ряда величин сформированы в семейство характеристик, проявляющих его свойства в рабочем режиме. В данной статье его особенностью является стабильность напряжения обмотки статора индуктора. Это дополняет проведенные ранее исследования индуктора в режиме со стабилизацией тока обмотки, что позволяет сравнить такие варианты работы. На примере тестового образца индуктора показан ряд его характеристик, приведены векторные диаграммы электрических и магнитных величин, иллюстрирующие их взаимные фазовые смещения. 

Ключові слова


трехфазный цилиндрический индуктор; рабочая камера; ферромагнитные элементы; вращающееся магнитное поле; численные расчеты; режим нагрузки; стабильное напряжение; электрические; магнитные и энергетические параметры; фазовые смещения

Повний текст:

PDF ENG (English) PDF RUS

Посилання


Chen L., Yang R., Zeng J., Shao Y., Xiao Q., Guo S. A wet belt permanent high gradient magnetic separator for purification of non-metallic ores. International Journal of Mineral Processing, 2016, vol. 153, pp. 66-70. doi: 10.1016/j.minpro.2016.06.004.

Ge W., Encinas A., Araujo E., Song S. Magnetic matrices used in high gradient magnetic separation (HGMS): A review. Results in Physics, 2017, vol. 7, pp. 4278-4286. doi: 10.1016/j.rinp.2017.10.055.

Wang Y., Gao D., Zheng X., Lu D., Li X. Rapid determination of the magnetization state of elliptic cross-section matrices for high gradient magnetic separation. Powder Technology, 2018, vol. 339, pp. 139-148. doi: 10.1016/j.powtec.2018.08.012.

Altın G., Inal S., Ibrahim A.L.P. Recovery of chromite from processing plant tailing by vertical ring and pulsating high gradient magnetic separation. MT Bilimsel, 2018, vol. 13, pp. 23-35.

Gerasimov M.D., Loktionov I.O. Dual-use technological solutions. Application prospects. Vektor GeoNauk, 2019, vol. 2, no. 1, pp. 19-26. doi: 10.24411/2619-0761-2019-10003.

Milykh V.I., Shilkova L.V. Experimental research of the three-phase physical model of the magnetic field inductor in the working mode when processing bulk material. Bulletin of NTU «KhPI». Series: «Electric machines and electromechanical energy conversion», 2020, no.3(1357), pp. 3-7. (Ukr). doi: 10.20998/2409-9295.2020.3.01.

Milykh V.I., Shilkova L.V. Numerical-field analysis of the characteristics of a three-phase magnetic field inductor for the treatment of various substances with current stabilization. Electrical engineering & electromechanics, 2019, no. 6, pp. 21-28. doi: 10.20998/2074-272X.2019.6.03.

Finite Element Method Magnetics: OldVersions. FEMM 4.2 11Oct2010 Self-Installing Executable. Available at: http://www.femm.info/wiki/OldVersions (accessed 15.06.2017).

Milykh V.I. The system of automated formation of electrical machines computational models for the FEMM software environment. Technical Electrodynamics, 2018, no.4, pp. 74-78. (Ukr.) doi: 10.15407/techned2018.04.074.


Пристатейна бібліографія ГОСТ


  1. Chen L., Yang R., Zeng J., Shao Y., Xiao Q., Guo S. A wet belt permanent high gradient magnetic separator for purification of non-metallic ores. International Journal of Mineral Processing, 2016, vol. 153, pp. 66-70. doi: 10.1016/j.minpro.2016.06.004.
  2. Ge W., Encinas A., Araujo E., Song S. Magnetic matrices used in high gradient magnetic separation (HGMS): A review. Results in Physics, 2017, vol. 7, pp. 4278-4286. doi: 10.1016/j.rinp.2017.10.055.
  3. Wang Y., Gao D., Zheng X., Lu D., Li X. Rapid determination of the magnetization state of elliptic cross-section matrices for high gradient magnetic separation. Powder Technology, 2018, vol. 339, pp. 139-148. doi: 10.1016/j.powtec.2018.08.012.
  4. Altın G., Inal S., Ibrahim A.L.P. Recovery of chromite from processing plant tailing by vertical ring and pulsating high gradient magnetic separation. MT Bilimsel, 2018, vol. 13, pp. 23-35.
  5. Герасимов М.Д., Локтионов И.О. Технологические решения двойного назначения. Перспективы применения. Вектор ГеоНаук, 2019, Т. 2, № 1, С. 19-26. doi: 10.24411/2619-0761-2019-10003.
  6. Мілих В.І., Шилкова Л.В. Експериментальне дослідження фізичної моделі трифазного індуктора магнітного поля в робочому режимі при обробці сипучого матеріалу. Вісник Національного технічного університету «ХПІ». Серія: «Електричні машини та електромеханічне перетворення енергії», 2020, №3(1357), С. 3-7. doi: 10.20998/2409-9295.2020.3.01.
  7. Милых В.И., Шилкова Л.В. Численно-полевой анализ характеристик трехфазного индуктора магнитного поля для обработки различных веществ при стабилизации его тока. Електротехніка і електромеханіка, 2019, № 6, С. 21-28. doi: 10.20998/2074-272X.2019.6.03.
  8. Finite Element Method Magnetics: OldVersions. FEMM 4.2 11Oct2010 Self-Installing Executable. – Режим доступу: http://www.femm.info/wiki/OldVersions/. – Дата звертання: 15.06.2017.
  9. Мілих В.І. Система автоматизованого формування розрахункових моделей електричних машин для програмного середовища FEMM. Технічна електродинаміка, 2018, № 4, С. 74-78. doi: 10.15407/techned2018.04.074.




Copyright (c) 2020 V. I. Milykh, L. V. Shilkova


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2074–272X (Print)
ІSSN 2309–3404 (Online)