DOI: https://doi.org/10.20998/2074-272X.2020.1.03

СРАВНЕНИЕ ЭНЕРГОПОТРЕБЛЕНИЯ РАЗЛИЧНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИ, РАБОТАЮЩИМИ В СОСТАВЕ НАСОСНОГО АГРЕГАТА

V. V. Goman, S. Kh. Oshurbekov, V. M. Kazakbaev, V. A. Prakht, V. A. Dmitrievskii

Анотація


Цель. Сравнительный анализ энергопотребления электродвигателей разных типов и классов энергоэффективности в электроприводе центробежного насоса мощностью 2,2 кВт системы водоснабжения с дроссельным регулированием. Сравнивались синхронные электродвигатели с прямым пуском и постоянными магнитами на роторе класса энергоэффективности IE4 и асинхронные электродвигатели классов энергоэффективности IE4 и IE3 различных производителей. Методика. Расчет энергопотребления проводился на основе данных насоса и электродвигателей, предоставляемых производителями, и включал в себя расчет энергопотребления центробежным насосом в типовом рабочем цикле, предполагающем работу с пониженными нагрузками в течение продолжительного времени. Результат. Получены расчетные данные по суточному и годовому энергопотреблению рассмотренных электродвигателей в типовом рабочем цикле насоса, годовая стоимость электроэнергии исходя из среднеевропейского тарифа, экономия в денежном выражении относительно наихудшего электродвигателя из рассмотренных. Практическое значение. Показано, что выбор электродвигателя по КПД при номинальной нагрузке, то есть фактически на основе присвоенного в соответствии со стандартом IEC 60034-30-1 класса энергоэффективности IE, не приводит к минимальному энергопотреблению центробежного насосного агрегата с переменной подачей в течение типового рабочего цикла. Также показано, что применение в насосных агрегатах с переменным расходом синхронных электродвигателей с прямым пуском и постоянными магнитами класса IE4 в ряде случаев приводит к большему энергопотреблению, чем применение асинхронных электродвигателей класса IE4, а иногда и класса IE3. Таким образом, при выборе класса энергоэффективности электродвигателя как для насосного агрегата, так и для любого другого механизма, работающего значительное время при пониженных нагрузках, следует проводить расчет энергопотребления на основании данных о типовом рабочем цикле либо экспериментальных данных. При этом существующий подход, основанный на определении индекса энергетической эффективности EEI, не дает информации об экономии электроэнергии в натуральном и стоимостном выражениях, в отличие от описанного в работе подхода. При выборе электродвигателя по принципу действия следует учитывать помимо энергопотребления, то, что синхронные электродвигатели с постоянными магнитами имеют большую стоимость, чем асинхронные электродвигатели, имеются трудности их запуска при значительном моменте инерции, а получение магнитов из редкоземельных металлов сопряжено со значительным экологическим ущербом.

Ключові слова


центробежные насосы; асинхронные электродвигатели; синхронные электродвигатели с прямым пуском и постоянными магнитами; класс энергоэффективности; коэффициент полезного действия; дроссельное регулирование

Повний текст:

PDF ENG (English) PDF RUS

Посилання


De Almeida A.T. et al. EuP Lot 11 Motors, Final report to the European Commission, 2008.

Phillips R., Tieben R. Improvement of Electric Motor Systems in Industry (IEMSI). Proceedings of the 10th international conference on energy efficiency in motor driven systems (EEMODS' 2017), Rome, Italy, September 6-8, 2017. pp. 53-67. doi: 10.2760/345473.

European Commission. Study on improving the energy efficiency of pumps, 2001.

Arun Shankar V.K., Umashankar S., Paramasivam S., Hanigovszki N. A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system. Applied Energy, 2016, vol. 181, pp. 495-513. doi: 10.1016/j.apenergy.2016.08.070.

European Commission Regulation (EC) No. 640/2009 implementing Directive 2005/32/ EC of the European Parliament and of the Council with Regard to Ecodesign Requirements for Electric Motors, (2009), amended by Commission Regulation (EU) No 4/2014 of January 6, 2014.

Rotating electrical machines – Part 30-1: Efficiency classes of line operated AC motors (IE code). IEC 60034-30-1/ Ed. 1; IEC: 2014-03.

De Almeida A., Fong J., Falkner H. New European ecodesign regulation proposal for electric motors and drives. Proceedings of the 9th International Conference on Energy Efficiency in Motor Driven Systems (EEMODS' 15), Helsinki, Finland, September 15-17, 2015. doi: 10.2790/903731.

Stoffel B. Assessing the Energy Efficiency of Pumps and Pump Units. Background and Methodology. Elsevier: Amsterdam, The Netherlands, 2015. doi: 10.1016/B978-0-08-100597-2.00009-4.

Gevorkov L. Simulation and Experimental Study on Energy Management of Circulating Centrifugal Pumping Plants with Variable Speed Drives. PhD Thesys,TallinnUniversity of Technology, 2017.

Shuvalova J. Optimal Approximation of Input-Output Characteristics of Power Units and Plants. PhD Thesys, Tallinn University of Technology, 2004.

Glover A., Lukaszczyk M. Oversizing pump motors – the problems. World Pumps, 2005, vol. 2005, no. 466, pp. 36-38. doi: 10.1016/s0262-1762(05)70638-6.

Safin N., Kazakbaev V., Prakht V., Dmitrievskii V. Calculation of the efficiency and power consumption of induction IE2 and synchronous reluctance IE5 electric drives in the pump application based on the passport specification according to the IEC 60034-30-2. 2018 25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED), Jan. 2018. doi: 10.1109/IWED.2018.8321381.

Kazakbaev V., Prakht V., Dmitrievskii V., Ibrahim M., Oshurbekov S., Sarapulov S. Efficiency Analysis of Low Electric Power Drives Employing Induction and Synchronous Reluctance Motors in Pump Applications. Energies, 2019, vol. 12, no. 6, p. 1144. doi: 10.3390/en12061144.

Mutize C., Wang R-J. Performance comparison of an induction machine and line-start PM motor for cooling fan applications». Proceedings of SAUPEC, 2013. doi: 10.13140/RG.2.1.2542.1922.

Jian Li, Jungtae Song, Yunhyun Cho. High Performance Line Start Permanent Magnet Synchronous Motor for Pumping System. IEEE International Symposium on Industrial Electronics, 2010. doi: 10.1109/ISIE.2010.5637082.

Kahrisangi M.G., Isfahani A.H., Vaez-Zadeh S., Sebdani M.R. Line-start permanent magnet synchronous motors versus induction motors: A comparative study. Frontiers of Electrical and Electronic Engineering, 2012, pp. 2095-2732. doi: 10.1007/s11460-012-0217-8.

NM, NMS, Close Coupled Centrifugal Pumps with Flanged Connections; Catalogue; Calpeda, 2018. Available at: https://www.calpeda.com/system/products/catalogue_50hzs/53/en/NM_NMS_EN2018.pdf?1549893188 (accessed 23 March 2019).

Catalogue of super premium efficiency SynchroVERT LSPM motors. Available at: https://www.bharatbijlee.com/media/14228/synchrovert_catalogue.pdf (accessed 15 May 2019).

Available at: https://www.weg.net/catalog/weg/RU/en/Electric-Motors/Special-Application-Motors/Permanent-Magnet-Motors/Line-Start-PM-Motors/Wquattro-2-2-kW-4P-100L-3Ph-230-400-V-50-Hz-IC411---TEFC---B3T/p/13009386 (accessed 28 August 2019).

Addendum to the operating instructions: AC Motors DR.71.J-DR.100.J with LSPM technology, 21281793/EN, 09/2014, SEW Eurodrive. Available at: https://download.sew-eurodrive.com/download/pdf/21343799.pdf (accessed 20 August 2019).

Catalog Siemens D81.1 Simotics GP, SD, XP, DP low-voltage motors, 05/2018. Available at: www.siemens.com/drives/catalogs (accessed 27 August 2019).

Available at: https://www.weg.net/catalog/weg/MV/en/Electric-Motors/Low-Voltage-NEMA-Motors/General-Purpose-ODP-TEFC/Cast-Iron-TEFC-General-Purpose/W22-Super-Premium-Efficiency/W22-Super-Premium-Efficiency-3-HP-4P-182-4T-3Ph-208-230-460-380-V-60-Hz-IC411---TEFC---Foot-mounted/p/12792146 (accessed 28 August 2019).

Available at: https://www.weg.net/catalog/weg/RU/en/Electric-Motors/Low-Voltage-IEC-Motors/General-Purpose-ODP-TEFC/Aluminum-TEFC-General-Purpose/Aluminium-TEFC-General-Purpose/Multimounting-IE3/Multimounting-IE3-2-2-kW-4P-100L-3Ph-220-240-380-415-460-V-50-Hz-IC411---TEFC---B3T/p/12397774 (accessed 24 August 2019).

Catalog ABB - Low Voltage General Performance motors, June 2018. Available at: https://library.e.abb.com/public/00389a1977844886b7e3e7560a6c22bf/9AKK105789%20EN%2006-2018%20General%20Perf.pdf (accessed 14 May 2019).

Commission Regulation (EC) No 641/2009 of July 22, 2009 implementing Directive 2005/32/EC of the European Parliament and of the Council with regard to ecodesign requirements for glandless standalone circulators and glandless circulators integrated in products, amended by Commission Regulation (EU) No 622/2012 of July 11, 2012.

Extended product approach for pumps, Copyright © 2014 by Europump. Published by Europump.

Ferreira F.J.T.E., De Almeida A.T. Energy savings potential associated with stator winding connection mode change in induction motors. 2016 XXII International Conference on Electrical Machines (ICEM), pp. 2775-2783. doi: 10.1109/ICELMACH.2016.7732915.

Eurostat Data for the Industrial Consumers in Germany. Available at: http://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_price_statistics#Electricity_prices_for_industrial_consumers (accessed 10 September 2019).

Rotating electrical machines – Part 30-2: Efficiency classes of variable speed AC motors (IE-code) IEC 60034-30-2/ IEC: 2016-12.

Rotating electrical machines – Part 30-2: Efficiency classes of variable speed AC motors (IE-code) IEC 60034-30-2 (draft). Available at: https://www.iec.ch/dyn/www/f?p=103:52:0::::FSP_ORG_ID,FSP_DOC_ID,FSP_DOC_PIECE_ID:1221,151336,279593 (accessed on 17 September 2019).

W. Ismar Borges de Lima, editor. Rare Earth Industry. Elsevier, 2015. doi: 10.1016/C2014-0-01863-1.

Dent P.C. Rare earth elements and permanent magnets (invited). Journal of Applied Physics, 2012, vol. 111, no. 7, p. 07A721. doi: 10.1063/1.3676616.

Goss J., Popescu M., Staton D. A comparison of an interior permanent magnet and copper rotor induction motor in a hybrid electric vehicle application. Proceedings of IEEE International Electric Machines & Drives Conference, EMDC 2013, Chicago, IL, USA. doi: 10.1109/IEMDC.2013.6556256.

Ismagilov F.R., Vavilov V.E., Gusakov D.V. Line-Start Permanent Magnet Synchronous Motor for Aerospace Application. 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Nov. 2018. doi: 10.1109/ESARS-ITEC.2018.8607689.

Sorgdrager A.J., Wang R.-J., Grobler A.J. Multiobjective Design of a Line-Start PM Motor Using the Taguchi Method. IEEE Transactions on Industry Applications, 2081, vol. 54, no. 5, pp. 4167-4176. doi: 10.1109/TIA.2018.2834306.

Kurihara K., Rahman M.A. High-Efficiency Line-Start Interior Permanent-Magnet Synchronous Motors. IEEE Transactions on Industry Applications, 2004, vol. 40, no. 3, pp. 789-796. doi: 10.1109/TIA.2004.827476.

Niaz Azari M., Mirsalim M. Line-start permanent-magnet motor synchronisation capability improvement using slotted solid rotor. IET Electric Power Applications, 2013, vol. 7, no. 6, pp. 462-469. doi: 10.1049/iet-epa.2013.0042.

Ferreira F.J.T.E., Leprettre B., de Almeida A.T. Comparison of protection requirements in IE2- IE3- and IE4-class motors. IEEE Transactions on Industry Applications, 2016, vol. 52, no. 4, pp. 3603-3610. doi: 10.1109/TIA.2016.2545647.

Commission regulation (EU) No 547/2012 of June 25, 2012 implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to ecodesign requirements for water pumps.

Lang S., Ludwig G., Pelz P.F., Stoffel B. General methodologies of determining the Energy Efficiency Index of pump units in the frame of the Extended Product Approach. Rio de Janeiro, EEMODS, 2013. doi: 10.2790/28891.


Пристатейна бібліографія ГОСТ


  1. De Almeida A.T. et al. EuP Lot 11 Motors, Final report to the European Commission, 2008.
  2. Phillips R., Tieben R. Improvement of Electric Motor Systems in Industry (IEMSI). Proceedings of the 10th international conference on energy efficiency in motor driven systems (EEMODS' 2017), Rome, Italy, September 6-8, 2017. pp. 53-67. doi: 10.2760/345473.
  3. European Commission. Study on improving the energy efficiency of pumps, 2001.
  4. Arun Shankar V.K., Umashankar S., Paramasivam S., Hanigovszki N. A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system. Applied Energy, 2016, vol. 181, pp. 495-513. doi: 10.1016/j.apenergy.2016.08.070.
  5. European Commission Regulation (EC) No. 640/2009 implementing Directive 2005/32/ EC of the European Parliament and of the Council with Regard to Ecodesign Requirements for Electric Motors, (2009), amended by Commission Regulation (EU) No 4/2014 of January 6, 2014.
  6. Rotating electrical machines – Part 30-1: Efficiency classes of line operated AC motors (IE code). IEC 60034-30-1/ Ed. 1; IEC: 2014-03.
  7. De Almeida A., Fong J., Falkner H. New European ecodesign regulation proposal for electric motors and drives. Proceedings of the 9th International Conference on Energy Efficiency in Motor Driven Systems (EEMODS' 15), Helsinki, Finland, September 15-17, 2015. doi: 10.2790/903731.
  8. Stoffel B. Assessing the Energy Efficiency of Pumps and Pump Units. Background and Methodology. Elsevier: Amsterdam, The Netherlands, 2015. doi: 10.1016/B978-0-08-100597-2.00009-4.
  9. Gevorkov L. Simulation and Experimental Study on Energy Management of Circulating Centrifugal Pumping Plants with Variable Speed Drives. PhD Thesys,TallinnUniversity of Technology, 2017.
  10. Shuvalova J. Optimal Approximation of Input-Output Characteristics of Power Units and Plants. PhD Thesys, Tallinn University of Technology, 2004.
  11. Glover A., Lukaszczyk M. Oversizing pump motors – the problems. World Pumps, 2005, vol. 2005, no. 466, pp. 36-38. doi: 10.1016/s0262-1762(05)70638-6.
  12. Safin N., Kazakbaev V., Prakht V., Dmitrievskii V. Calculation of the efficiency and power consumption of induction IE2 and synchronous reluctance IE5 electric drives in the pump application based on the passport specification according to the IEC 60034-30-2. 2018 25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED), Jan. 2018. doi: 10.1109/IWED.2018.8321381.
  13. Kazakbaev V., Prakht V., Dmitrievskii V., Ibrahim M., Oshurbekov S., Sarapulov S. Efficiency Analysis of Low Electric Power Drives Employing Induction and Synchronous Reluctance Motors in Pump Applications. Energies, 2019, vol. 12, no. 6, p. 1144. doi: 10.3390/en12061144.
  14.  Mutize C., Wang R-J. Performance comparison of an induction machine and line-start PM motor for cooling fan applications». Proceedings of SAUPEC, 2013. doi: 10.13140/RG.2.1.2542.1922.
  15. Jian Li, Jungtae Song, Yunhyun Cho. High Performance Line Start Permanent Magnet Synchronous Motor for Pumping System. IEEE International Symposium on Industrial Electronics, 2010. doi: 10.1109/ISIE.2010.5637082.
  16. Kahrisangi M.G., Isfahani A.H., Vaez-Zadeh S., Sebdani M.R. Line-start permanent magnet synchronous motors versus induction motors: A comparative study. Frontiers of Electrical and Electronic Engineering, 2012, pp. 2095-2732. doi: 10.1007/s11460-012-0217-8.
  17. NM, NMS, Close Coupled Centrifugal Pumps with Flanged Connections; Catalogue; Calpeda, 2018. Available at: https://www.calpeda.com/system/products/catalogue_50hzs/53/en/NM_NMS_EN2018.pdf?1549893188 (accessed 23 March 2019).
  18. Catalogue of super premium efficiency SynchroVERT LSPM motors. Available at: https://www.bharatbijlee.com/media/14228/synchrovert_catalogue.pdf (accessed 15 May 2019).
  19. Available at: https://www.weg.net/catalog/weg/RU/en/Electric-Motors/Special-Application-Motors/Permanent-Magnet-Motors/Line-Start-PM-Motors/Wquattro-2-2-kW-4P-100L-3Ph-230-400-V-50-Hz-IC411---TEFC---B3T/p/13009386 (accessed 28 August 2019).
  20. Addendum to the operating instructions: AC Motors DR.71.J-DR.100.J with LSPM technology, 21281793/EN, 09/2014, SEW Eurodrive. Available at: https://download.sew-eurodrive.com/download/pdf/21343799.pdf (accessed 20 August 2019).
  21. Catalog Siemens D81.1 Simotics GP, SD, XP, DP low-voltage motors, 05/2018. Available at: www.siemens.com/drives/catalogs (accessed 27 August 2019).
  22. Available at: https://www.weg.net/catalog/weg/MV/en/Electric-Motors/Low-Voltage-NEMA-Motors/General-Purpose-ODP-TEFC/Cast-Iron-TEFC-General-Purpose/W22-Super-Premium-Efficiency/W22-Super-Premium-Efficiency-3-HP-4P-182-4T-3Ph-208-230-460-380-V-60-Hz-IC411---TEFC---Foot-mounted/p/12792146 (accessed 28 August 2019).
  23. Available at: https://www.weg.net/catalog/weg/RU/en/Electric-Motors/Low-Voltage-IEC-Motors/General-Purpose-ODP-TEFC/Aluminum-TEFC-General-Purpose/Aluminium-TEFC-General-Purpose/Multimounting-IE3/Multimounting-IE3-2-2-kW-4P-100L-3Ph-220-240-380-415-460-V-50-Hz-IC411---TEFC---B3T/p/12397774 (accessed 24 August 2019).
  24. Catalog ABB - Low Voltage General Performance motors, June 2018. Available at: https://library.e.abb.com/public/00389a1977844886b7e3e7560a6c22bf/9AKK105789%20EN%2006-2018%20General%20Perf.pdf (accessed 14 May 2019).
  25. Commission Regulation (EC) No 641/2009 of July 22, 2009 implementing Directive 2005/32/EC of the European Parliament and of the Council with regard to ecodesign requirements for glandless standalone circulators and glandless circulators integrated in products, amended by Commission Regulation (EU) No 622/2012 of July 11, 2012.
  26. Extended product approach for pumps, Copyright © 2014 by Europump. Published by Europump.
  27. Ferreira F.J.T.E., De Almeida A.T. Energy savings potential associated with stator winding connection mode change in induction motors. 2016 XXII International Conference on Electrical Machines (ICEM), pp. 2775-2783. doi: 10.1109/ICELMACH.2016.7732915.
  28. Eurostat Data for the Industrial Consumers in Germany. Available at: http://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_price_statistics#Electricity_prices_for_industrial_consumers (accessed 10 September 2019).
  29. Rotating electrical machines – Part 30-2: Efficiency classes of variable speed AC motors (IE-code) IEC 60034-30-2/ IEC: 2016-12.
  30. Rotating electrical machines – Part 30-2: Efficiency classes of variable speed AC motors (IE-code) IEC 60034-30-2 (draft). Available at: https://www.iec.ch/dyn/www/f?p=103:52:0::::FSP_ORG_ID,FSP_DOC_ID,FSP_DOC_PIECE_ID:1221,151336,279593 (accessed on 17 September 2019).
  31. W. Ismar Borges de Lima, editor. Rare Earth Industry. Elsevier, 2015. doi: 10.1016/C2014-0-01863-1.
  32. Dent P.C. Rare earth elements and permanent magnets (invited). Journal of Applied Physics, 2012, vol. 111, no. 7, p. 07A721. doi: 10.1063/1.3676616.
  33. Goss J., Popescu M., Staton D. A comparison of an interior permanent magnet and copper rotor induction motor in a hybrid electric vehicle application. Proceedings of IEEE International Electric Machines & Drives Conference, EMDC 2013, Chicago, IL, USA. doi: 10.1109/IEMDC.2013.6556256.
  34. Ismagilov F.R., Vavilov V.E., Gusakov D.V. Line-Start Permanent Magnet Synchronous Motor for Aerospace Application. 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Nov. 2018. doi: 10.1109/ESARS-ITEC.2018.8607689.
  35. Sorgdrager A.J., Wang R.-J., Grobler A.J. Multiobjective Design of a Line-Start PM Motor Using the Taguchi Method. IEEE Transactions on Industry Applications, 2081, vol. 54, no. 5, pp. 4167-4176. doi: 10.1109/TIA.2018.2834306.
  36. Kurihara K., Rahman M.A. High-Efficiency Line-Start Interior Permanent-Magnet Synchronous Motors. IEEE Transactions on Industry Applications, 2004, vol. 40, no. 3, pp. 789-796. doi: 10.1109/TIA.2004.827476.
  37. Niaz Azari M., Mirsalim M. Line-start permanent-magnet motor synchronisation capability improvement using slotted solid rotor. IET Electric Power Applications, 2013, vol. 7, no. 6, pp. 462-469. doi: 10.1049/iet-epa.2013.0042.
  38. Ferreira F.J.T.E., Leprettre B., de Almeida A.T. Comparison of protection requirements in IE2- IE3- and IE4-class motors. IEEE Transactions on Industry Applications, 2016, vol. 52, no. 4, pp. 3603-3610. doi: 10.1109/TIA.2016.2545647.
  39. Commission regulation (EU) No 547/2012 of June 25, 2012 implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to ecodesign requirements for water pumps.
  40. Lang S., Ludwig G., Pelz P.F., Stoffel B. General methodologies of determining the Energy Efficiency Index of pump units in the frame of the Extended Product Approach. Rio de Janeiro, EEMODS, 2013. doi: 10.2790/28891.




Copyright (c) 2020 V. V. Goman, S. Kh. Oshurbekov, V. M. Kazakbaev, V. A. Prakht, V. A. Dmitrievskii


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2074–272X (Print)
ІSSN 2309–3404 (Online)