• R. V. Zaitsev National Technical University «Kharkiv Polytechnic Institute», Ukraine
  • M. V. Kirichenko National Technical University «Kharkiv Polytechnic Institute», Ukraine
  • G. S. Khrypunov National Technical University «Kharkiv Polytechnic Institute», Ukraine
  • L. V. Zaitseva Zhukovsky National Aerospace University «Kharkiv Aviation Institute», Ukraine
  • O. N. Chugai Zhukovsky National Aerospace University «Kharkiv Aviation Institute», Ukraine
  • A. A. Drozdova National Technical University «Kharkiv Polytechnic Institute», Ukraine



silicon solar cells, working temperature, efficiency dependence, diode and output parameters, cooling system, solar irradiation concentration, hybrid solar generating module


Based on experimental study and computer modeling of working temperature influence on the efficiency of Chinese production silicon solar cells identified temperature dependence of efficiency shows the feasibility of using Chinese production Si-SC in the construction of photovoltaic thermal system, which together with the heat pump is part of a combined system for hot water supply, heating and air conditioning. Based on a detailed analysis of the working temperature influence on the efficiency of photovoltaic processes that determine the solar cells work, it has been developed the optimal construction and technological solution of hybrid solar generated module, the main feature of which is the heat exchange block, designed to reduce the solar cells working temperature. The experimental testing of hybrid modules samples equipped with developed cooling system, high-voltage part of power take-off system demonstrates their reliability and high efficiency which allow to achieve the such module efficiency up to 18.5 %. 


Bye G., Ceccaroli B. Solar grade silicon: Technology status and industrial trends. Solar Energy Materials and Solar Cells, 2014, vol.130, pp. 634-646. doi: 10.1016/j.solmat.2014.06.019.

Singh P., Ravindra N.M. Temperature dependence of solar cell performance – an analysis. Solar Energy Materials and Solar Cells, 2012, vol.101, pp. 36-45. doi: 10.1016/j.solmat.2012.02.019.

Singh P., Singh S.N., Lal. M., Husain M. Temperature dependence of I–V characteristics and performance parameters of silicon solar cell. Solar Energy Materials and Solar Cells, 2008, vol.92, iss.12, pp. 1611-1616. doi: 10.1016/j.solmat.2008.07.010.

Radziemska E. Effect of temperature on dark current characteristics of silicon solar cells and diodes. International Journal Energy Res, 2006, vol.30, iss.2, pp. 127-134. doi: 10.1002/er.1113.

Cai W., Chao F., JinLong T., DeXiong L., SiFu H., ZhiGang X. The influence of environment temperatures on single crystalline and polycrystalline silicon solar cell performance. Science China: Physics, Mechanics and Astronomy, 2012, vol.55, no.2, pp. 235-241. doi: 10.1007/s11433-011-4619-z.

Möller H.J. Semiconductors for solar cells. Boston, Artech House, 1993.

Afanasyev V.P., Terukov E.I., Scherchenko А.А. Thin film solar cells on the silicon base. SPbSETU, LEТI, 2012.

Kharchenko V.V., Nikitin B.А., Tichonov P.V. Select of photoenergy heat module parameters. Renewable and small energy 2012: Proc. of IX In-tern. ann. conf. М., 2012, pp. 292-297.

Ramos A., Chatzopoulou M.A., Guarracino I., Freeman J., Markides C.N. Hybrid photovoltaic-thermal solar systems for combined heating, cooling and power provision in the urban environment. Energy Conversion and Management, 2017, vol.150, pp. 838-850. doi: 10.1016/j.enconman.2017.03.024.

Zhang X., Zhao X., Smith S., Xu J., Yu X. Review of R&D progress and practical application of the solar. Renewable Sustainable Energy Rev, 2012, vol.16, iss.1, pp. 599-617. doi: 10.1016/j.rser.2011.08.026.

Herrando M., Markides C.N. Hybrid PV and solar-thermal systems for domestic heat and power provision in the UK: Techno-economic considerations. Applied Energy, 2016, vol.161, pp.512-532. doi: 10.1016/j.apenergy.2015.09.025.

Dupeyrat P., Menezo C., Fortuin S. Study of the thermal and electrical performances of PVT solar hot water system. Energy and Buildings, 2014, vol.68, part C, pp.751-755. doi: 10.1016/j.enbuild.2012.09.032.

Zhao X., Zhang X. Handbook Nearly Zero Energy Building Refurbishment, Springer, 2013.

Romero Rodríguez L., Salmerón Lissén J.M., Sánchez Ramos J., Rodríguez Jara E.Á., Álvarez Domínguez S. Analysis of the economic feasibility and reduction of a building’s energy consumption and emissions when integrating hybrid solar thermal/PV/micro-CHP systems. Applied Energy, 2016, vol.165, pp.828-838. doi: 10.1016/j.apenergy.2015.12.080.

He W., Chow T.-T., Ji J., Lu J., Pei G., Chan L. Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water. Applied Energy, 2006, vol.83, iss.3, pp.199-210. doi: 10.1016/j.apenergy.2005.02.007.

Coventry J.S. Performance of a concentrating photovoltaic/thermal solar collector. Solar Energy, 2005, vol.78, iss.2, pp. 211-222. doi: 10.1016/j.solener.2004.03.014.

Pathak M.J.M., Sanders P.G., Pearce J.M. Optimizing limited solar roof access by exergy analysis of solar thermal, photovoltaic, and hybrid photovoltaic thermal systems. Applied Energy, 2014, vol.120, pp.115-124. doi: 10.1016/j.apenergy.2014.01.041.

Liang R., Zhang J., Ma L., Li Y. Performance evaluation of new type hybrid photovoltaic/thermal solar collector by experimental study. Applied Thermal Engineering, 2015, vol.75, pp.487-492. doi: 10.1016/j.applthermaleng.2014.09.075.

Zaitsev R.V., Kyrychenko M.V., Kholod A.V., Zaitseva L.V., Prokopenko D.S., Khrypunov G.S. Calculation of operating parameters of high-voltage power take-off system for the photovoltaic facility. Electrical engineering & electromechanics, 2016, no.4, pp. 63-68. doi: 10.20998/2074-272X.2016.4.09.




How to Cite

Zaitsev, R. V., Kirichenko, M. V., Khrypunov, G. S., Zaitseva, L. V., Chugai, O. N., & Drozdova, A. A. (2019). CONSTRUCTIVE SOLUTION OF HIGHLY EFFECTIVE PHOTOENERGY MODULE: DEVELOPMENT AND EXPERIMENTAL TESTING. Electrical Engineering & Electromechanics, (6), 70–75.



Power Stations, Grids and Systems