FORMATION OF CHARACTERISTICS OF OPERATING MODES OF SWITCHED RELUCTANCE MOTORS WITH PERIODIC LOAD
DOI:
https://doi.org/10.20998/2074-272X.2019.4.02Keywords:
switched reluctance motor, periodic load, characteristics, efficiency, rotation frequency ripplesAbstract
Purpose. The purpose of the article is to create dependencies of efficiency on effective power when changing the supply voltage and switching angles, pulsation speeds of the rotor from the moment of inertia of the drive and mechanical characteristics of switched-reluctance motors with a periodic load, developing recommendations to ensure their effective and reliable operating modes in single-cylinder piston compressors. Methodology. To carry out research simulation mathematic modeling was used, to calculate the nonlinear inductance dependence on current and rotor angle, the finite element method. Results. The measures of improve the efficiency and reliability of drives single-cylinder piston compressors on the basis of the SRM has been proposed. Originality. Approaches that provide maximum efficiency values and a regulated level of ripple speeds of rotors SRM of single-cylinder reciprocating compressors in the operating frequency control range, with periodic load have been developed. Practical value. Algorithm for changing the supply voltage and switching angles of the SRM of single-cylinder compressors, which provides maximum efficiency values SRM when the rotational speed changes within the 1:6 range, has been developed. The minimum values of the moments of inertia of the drive of single-cylinder compressors, providing a regulated level of pulsations of the rotational speed of the rotor SRM with its regulation, were determined.References
Zhivitsa V.I., Onischenko O.A., Radimov I.N., Shevchenko V.B. Modern electric drive of refrigeration units. Refrigeration Engineering and Technology, 1999, iss.64, pp. 112-116. (Rus).
Andersen H.R. Motor drives for variable speed compressors: Introduction and state of the art analysis. PhD Thesis. Aalborg University Publ., 1996, vol.1, 62 p.
Jakobsen A., Rasmussen B. Energy optimization of domestic refrigerators Major energy saving by use of variable speed compressors and evaporator fans. International Appliance Manufacturing, 1998, pp. 105-109.
Monasry J.F., Hirayama T., Aoki T., Shida S., Hatayama M., Okada M. Development of large capacity and high efficiency rotary compressor. 24th International Compressor Engineering Conference at Purdue, July 9-12, 2018, paper 2576.
Bibik O.V. Analysis and main trends of electromechanical energy converters for systems with periodic load. Works of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 2016, no.43, pp. 37-43. (Ukr).
Bibik O.V. Rationale approaches to designing asynchronous motors with variable load. Bulletin of the National Technical University «KhPI». Series: Electrical Machines and Electromechanical Energy Conversion, 2019, no.4(1329), pp. 94-98. (Ukr). doi: 10.20998/2409-9295.2019.4.14.
Morozyuk L.I., Morozyuk T.V., Iastrebova L.V. Proektirovanie porshnevogo kompressora holodilnyih mashin i teplovyih nasosov [Designing a piston compressor for refrigerating machines and heat pumps].Odessa, OGAH Publ., 2003. 75 p. (Rus).
Andrada P., Blanque B., Perat J.I., Torrent M., Martinez E., Sanchez J.A. Comparative efficiency of switched reluctance and induction motor drives for slowly varying loads. International Conference on Renewable Energies and Power Quality (ICREPQ’06), 2007.
Mazurenko L.I., Bibik O.V., Bilyk O.A., Shihnenko M.O. Simulation mode and speed control of switched reluctance motor using a converter with the C-dump and the oscillation return of energy at changing switching angles. Bulletin of the National Technical University «KhPI». Series: Electrical Machines and Electromechanical Energy Conversion, 2016, no.11(1183), p. 64-69. (Ukr).
Kostenko M.P. Piotrovsky L.M. Elektricheskie mashinyi. V 2-h. ch. Ch.1. – Mashinyi postoyannogo toka. Transformatoryi. Uchebnik dlya studentov vyisshih tehnicheskih uchebnyih zavedeniy [Electric machines. In 2 parts. Рart 1. – DC machines. Transformers. Textbook for students of higher technical educational institutions].Leningrad, Energy Publ., 1972. 544 p. (Rus).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 O. V. Bibik, L. I. Mazurenko, M. O. Shykhnenko
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.