ON-LINE VOLTAGE STABILITY EVALUATION USING NEURO-FUZZY INFERENCE SYSTEM AND MOTH-FLAME OPTIMIZATION ALGORITHM

Authors

  • Arif Bourzami University of Ferhat Abbes Setif, Algeria
  • Mohammed Amroune University of Ferhat Abbes Setif, Algeria
  • Tarek Bouktir University of Ferhat Abbes Setif, Algeria https://orcid.org/0000-0001-6352-2146

DOI:

https://doi.org/10.20998/2074-272X.2019.2.07

Keywords:

voltage stability, line voltage stability index, Moth-Flame optimization, adaptive neuro-fuzzy inference system

Abstract

Purpose. In recent years, the problem of voltage instability has received special attention from many utilities and researchers. The present paper deals with the on-line evaluation of voltage stability in power system using Adaptive Neuro-Fuzzy Inference System (ANFIS). The developed ANFIS model takes the voltage magnitudes and their phases obtained from the weak buses in the system as input variables. The weak buses identification is formulated as an optimization problem considering the operating cost, the real power losses and the voltage stability index. The recently developed Moth-Flame Optimization (MFO) algorithm was adapted to solve this optimization problem. The validation of the proposed on-line voltage stability assessment approach was carried out on IEEE 30-bus and IEEE 118-bus test systems. The obtained results show that the proposed approach can achieve a higher accuracy compared to the Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) neural networks.

Author Biographies

Arif Bourzami, University of Ferhat Abbes Setif

Department of Electrical Engineering

Mohammed Amroune, University of Ferhat Abbes Setif

Department of Electrical Engineering

Tarek Bouktir, University of Ferhat Abbes Setif

Department of Electrical Engineering

References

Modi P.K., Singh S.P., Sharma J.D. Voltage stability evaluation of power system with FACTS devices using fuzzy neural network. Engineering Applications of Artificial Intelligence, 2007, vol.20, no.4, pp. 481-491. doi: 10.1016/j.engappai.2006.08.003.

Larki F., Joorabian M., Meshgin Kelk H., Pishvaei M. Voltage Stability Evaluation of The Khouzestan Power System in Iran Using CPF Method and Modal Analysis. 2010 Asia-Pacific Power and Energy Engineering Conference. doi: 10.1109/appeec.2010.5448825.

Xue Y., Manjrekar M., Lin C., Tamayo M., Jiang J.N. Voltage stability and sensitivity analysis of grid-connected photovoltaic systems. 2011 IEEE Power and Energy Society General Meeting, Jul. 2011. doi: 10.1109/pes.2011.6039649.

Kojima T., Mori H. Development of nonlinear predictor with a set of predicted points for continuation power flow. Electrical Engineering in Japan, 2008, vol.163, no.4, pp. 30-41. doi: 10.1002/eej.20297.

Modarresi J., Gholipour E., Khodabakhshian A. A comprehensive review of the voltage stability indices. Renewable and Sustainable Energy Reviews, 2016, vol.63, pp. 1-12. doi: 10.1016/j.rser.2016.05.010.

Zhou D.Q., Annakkage U.D., Rajapakse A.D. Online Monitoring of Voltage Stability Margin Using an Artificial Neural Network. IEEE Transactions on Power Systems, 2010, vol.25, no.3, pp. 1566-1574. doi: 10.1109/tpwrs.2009.2038059.

Chakrabarti S., Jeyasurya B. On-line voltage stability monitoring using artificial neural network. 2004 Large Engineering Systems Conference on Power Engineering (IEEE Cat. No.04EX819). doi: 10.1109/lescpe.2004.1356271.

Jayasankar V., Kamaraj N., Vanaja N. Estimation of voltage stability index for power system employing artificial neural network technique and TCSC placement. Neurocomputing, 2010, vol.73, no.16-18, pp. 3005-3011. doi: 10.1016/j.neucom.2010.07.006.

Ashraf S.M., Gupta A., Choudhary D.K., Chakrabarti S. Voltage stability monitoring of power systems using reduced network and artificial neural network. International Journal of Electrical Power & Energy Systems, 2017, vol.87, pp. 43-51. doi: 10.1016/j.ijepes.2016.11.008.

Chakraborty K., De A., Chakrabarti A. Voltage stability assessment in power network using self organizing feature map and radial basis function. Computers & Electrical Engineering, 2012, vol.38, no.4, pp. 819-826. doi: 10.1016/j.compeleceng.2012.03.012.

Devaraj D., Preetha Roselyn J. On-line voltage stability assessment using radial basis function network model with reduced input features. International Journal of Electrical Power & Energy Systems, 2011, vol.33, no.9, pp. 1550-1555. doi: 10.1016/j.ijepes.2011.06.008.

Moghavvemi M., Yang S.S. ANN Application Techniques for Power System Stability Estimation. Electric Machines & Power Systems, 2000, vol.28, no.2, pp. 167-178. doi: 10.1080/073135600268441.

Hashemi S., Aghamohammadi M.R. Wavelet based feature extraction of voltage profile for online voltage stability assessment using RBF neural network. International Journal of Electrical Power & Energy Systems, 2013, vol.49, pp. 86-94. doi: 10.1016/j.ijepes.2012.12.019.

Bedoya D.B., Castro C.A., da Silva L.C.P. A method for computing minimum voltage stability margins of power systems. IET Generation, Transmission & Distribution, 2008, vol.2, no.5, p. 676. doi: 10.1049/iet-gtd:20070194.

Reddy M.J., Mohanta D.K. Adaptive-neuro-fuzzy inference system approach for transmission line fault classification and location incorporating effects of power swings. IET Generation, Transmission & Distribution, 2008, vol.2, no.2, p. 235. doi: 10.1049/iet-gtd:20070079.

Senthil Kumar A., Rajasekar S., Raj P.A.-D.-V. Power Quality Profile Enhancement of Utility Connected Microgrid System Using ANFIS-UPQC. Procedia Technology, 2015, vol.21, pp. 112-119. doi: 10.1016/j.protcy.2015.10.017.

Pappachen A., Fathima A.P. Load frequency control in deregulated power system integrated with SMES–TCPS combination using ANFIS controller. International Journal of Electrical Power & Energy Systems, 2016, vol.82, pp. 519-534. doi: 10.1016/j.ijepes.2016.04.032.

Sree Varshini G.Y., Raja S.C., Venkatesh P. Design of ANFIS Controller for Power System Stability Enhancement Using FACTS Device. Power Electronics and Renewable Energy Systems, 2014, pp. 1163-1171. doi: 10.1007/978-81-322-2119-7_113.

Yabe K., Koda J., Yoshida K., Chiang K.H., Khedkar P.S., Leonard D.J., Miller N.W. Conceptual designs of AI-based systems for local prediction of voltage collapse. IEEE Transactions on Power Systems, 1996, vol.11, no.1, pp. 137-145. doi: 10.1109/59.485995.

Berizzi A., Bovo C., Delfanti M., MerloM., Pozzi M. A Neuro-Fuzzy Inference System for the Evaluation of Voltage Collapse Risk Indices. Bulk Power System Dynamics and Control, 2004, pp. 22-27.

Torres S.P., Peralta W.H., Castro C.A.Power System Loading Margin Estimation Using a Neuro-Fuzzy Approach. IEEE Transactions on Power Systems, 2007, vol.22, no.4, pp. 1955-1964. doi: 10.1109/tpwrs.2007.907380.

Modi P.K., Singh S.P., Sharma J.D. Voltage stability evaluation of power system with FACTS devices using fuzzy neural network. Engineering Applications of Artificial Intelligence, 2007, vol.20, no.4, pp. 481-491. doi: 10.1016/j.engappai.2006.08.003.

Modi P.K., Singh S.P., Sharma J.D. Fuzzy neural network based voltage stability evaluation of power systems with SVC. Applied Soft Computing, 2008, vol.8, no.1, pp. 657-665. doi: 10.1016/j.asoc.2007.05.004.

Mirjalili S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 2015, vol.89, pp. 228-249. doi: 10.1016/j.knosys.2015.07.006.

Jang J.-S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 1993, vol.23, no.3, pp. 665-685. doi: 10.1109/21.256541.

Reddy M.J., Mohanta D.K. A Wavelet-neuro-fuzzy Combined Approach for Digital Relaying of Transmission Line Faults. Electric Power Components and Systems, 2007, vol.35, no.12, pp. 1385-1407. doi: 10.1080/15325000701426161.

Chiu S.L. Fuzzy Model Identification Based on Cluster Estimation. Journal of Intelligent and Fuzzy Systems, 1994, vol.2, no.3, pp. 267-278. doi: 10.3233/IFS-1994-2306.

Chiu S. Method and software for extracting fuzzy classification rules by subtractive clustering. Proceedings of North American Fuzzy Information Processing, 1996, pp. 19-22. doi: 10.1109/nafips.1996.534778.

Alizadeh Mousavi O., Cherkaoui R. Investigation of P–V and V–Q based optimization methods for voltage and reactive power analysis. International Journal of Electrical Power & Energy Systems, 2014, vol.63, pp. 769-778. doi: 10.1016/j.ijepes.2014.06.060.

Milano F. Continuation Power Flow Analysis. In Power System Modeling and Scripting. Springer, Power Systems, 2010, pp. 103-130. doi: 10.1007/978-3-642-13669-6_5.

Moghavvemi M., Faruque M.O. Estimation of voltage collapse from local measurement of line power flow and bus voltages. PowerTech Budapest 1999. Abstract Records. (Cat. No.99EX376). doi: 10.1109/ptc.1999.826508.

Zimmerman R.D., Murillo-Sanchez C.E., Thomas R.J. MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education. IEEE Transactions on Power Systems, 2011, vol.26, no.1, pp. 12-19. doi: 10.1109/tpwrs.2010.2051168.

Chih-Wen Liu, Chen-Sung Chang, Mu-Chun Su. Neuro-fuzzy networks for voltage security monitoring based on synchronized phasor measurements. IEEE Transactions on Power Systems, 1998, vol.13, no.2, pp. 326-332. doi: 10.1109/59.667346.

Hong Y.-Y. Voltage stability indicator for identification of the weakest bus/area in power systems. IEE Proceedings –Generation, Transmission and Distribution, 1994, vol.141, no.4, p. 305. doi: 10.1049/ip-gtd:19949985.

Qin W., Zhang W., Wang P., Han X. Power system reliability based on voltage weakest bus identification. 2011 IEEE Power and Energy Society General Meeting, Jul. 2011. doi: 10.1109/pes.2011.6039270.

Amroune M., Bourzami A., Bouktir T. Weakest Buses Identification and Ranking in Large Power Transmission Network by Optimal Location of Reactive Power Supports. TELKOMNIKA Indonesian Journal of Electrical Engineering, 2014, vol.12, no.10. doi: 10.11591/telkomnika.v12i10.6508.

Gopalakrishnan K., Ceylan H., Attoh-Okine N.O. (Eds.) Intelligent and Soft Computing in Infrastructure Systems Engineering. Studies in Computational Intelligence, Springer-Verlag BerlinHeidelberg, 2009. doi: 10.1007/978-3-642-04586-8.

Downloads

Published

2019-04-16

How to Cite

Bourzami, A., Amroune, M., & Bouktir, T. (2019). ON-LINE VOLTAGE STABILITY EVALUATION USING NEURO-FUZZY INFERENCE SYSTEM AND MOTH-FLAME OPTIMIZATION ALGORITHM. Electrical Engineering & Electromechanics, (2), 47–54. https://doi.org/10.20998/2074-272X.2019.2.07

Issue

Section

Power Stations, Grids and Systems