DOI: https://doi.org/10.20998/2074-272X.2018.6.10

SPRING SEARCH ALGORITHM FOR SIMULTANEOUS PLACEMENT OF DISTRIBUTED GENERATION AND CAPACITORS

M. Dehghani, M. Mardaneh, Z. Montazeri, A. Ehsanifar, M.J. Ebadi, O. M. Grechko

Анотація


Цель. В статье для одновременного размещения распределенной генерации  и конденсаторов представлен новый подход, основанный на «пружинном» алгоритме поиска (Spring Search Algorithm, SSA). Данный метод состоит из двух этапов  с использованием двух показателей чувствительности Sv и Ss. Показатели чувствительности Sv и Ss рассчитываются в соответствии с номинальным напряжением и потерями в сети. На первом этапе определяются шины-кандидаты для установки распределенной генерации и конденсаторов согласно Sv и Ss. Затем, на втором этапе размещение и калибровка распределенной генерации и конденсаторов выполняются с использованием алгоритма  SSA. «Пружинный» алгоритм поиска входит в число алгоритмов оптимизации, разработанных на основе идей законов природы, а факторы поиска представляют собой набор объектов. Предлагаемый алгоритм тестируется на радиальных распределительных сетях с 33 и 69 шинами. Результаты тестирования показывают хорошую эффективность предложенного метода.

Ключові слова


размещение распределенной генерации; размещение конденсаторов; распределительная сеть; «пружинный» алгоритм поиска SSA; показатель чувствительности; двухэтапное одновременное размещение

Повний текст:

PDF ENG (English)

Посилання


1. Daly P.A. Morrison J. Understanding the potential benefits of distributed generation on power delivery systems. 2001 Rural Electric Power Conference. Papers Presented at the 45th Annual Conference (Cat. No.01CH37214). doi: 10.1109/repcon.2001.949510.

2. Gözel T., Hocaoglu M.H. An analytical method for the sizing and siting of distributed generators in radial systems. Electric Power Systems Research, 2009, vol.79, no.6, pp. 912-918. doi: 10.1016/j.epsr.2008.12.007.

3. Wang C., Nehrir M.H. Analytical approaches for optimal placement of distributed generation sources in power systems. IEEE Transactions on Power Systems, 2004, vol.19, no.4, pp. 2068-2076. doi: 10.1109/tpwrs.2004.836189.

4. Abou El-Ela A.A., Allam S.M., Shatla M.M. Maximal optimal benefits of distributed generation using genetic algorithms. Electric Power Systems Research, 2010, vol.80, no.7, pp. 869-877. doi: 10.1016/j.epsr.2009.12.021.

5. Barin A., Pozzatti L.F., Canha L.N., Machado R.Q., Abaide A.R., Arend G. Multi-objective analysis of impacts of distributed generation placement on the operational characteristics of networks for distribution system planning. International Journal of Electrical Power & Energy Systems, 2010, vol.32, no.10, pp. 1157-1164. doi: 10.1016/j.ijepes.2010.06.015.

6. Ghosh S., Ghoshal S.P., Ghosh S. Optimal sizing and placement of distributed generation in a network system. International Journal of Electrical Power & Energy Systems, 2010, vol.32, no.8, pp. 849-856. doi: 10.1016/j.ijepes.2010.01.029.

7. Ettehadi M., Ghasemi H., Vaez-Zadeh S. Voltage stability-based DG placement in distribution networks. IEEE Transactions on Power Delivery, 2013, vol.28, no.1, pp. 171-178. doi: 10.1109/tpwrd.2012.2214241.

8. Wang Z., Chen B., Wang J., Begovic M.M. Stochastic DG placement for conservation voltage reduction based on multiple replications procedure. IEEE Transactions on Power Delivery, 2015, vol.30, no.3, pp. 1039-1047. doi: 10.1109/tpwrd.2014.2331275.

9. Rahmani-andebili M. Distributed generation placement planning modeling feeder’s failure rate and customer’s load type. IEEE Transactions on Industrial Electronics, 2016, vol.63, no.3, pp. 1598-1606. doi: 10.1109/tie.2015.2498902.

10. Baran M.E., Wu F.F. Optimal capacitor placement on radial distribution systems. IEEE Transactions on Power Delivery, 1989, vol.4, no.1, pp. 725-734. doi: 10.1109/61.19265.

11. Chiang H.-D., Wang J.-C., Cockings O., Shin H.-D. Optimal capacitor placements in distribution systems. I. A new formulation and the overall problem. IEEE Transactions on Power Delivery, 1990, vol.5, no.2, pp. 634-642. doi: 10.1109/61.53065.

12. Dura H. Optimum number, location, and size of shunt capacitors in radial distribution feeders a dynamic programming approach. IEEE Transactions on Power Apparatus and Systems, 1968, vol.PAS-87, no.9, pp. 1769-1774. doi: 10.1109/tpas.1968.291982.

13. Fawzi T., El-sobki S., Abdel-halim M. New approach for the application of shunt capacitors to the primary distribution feeders. IEEE Transactions on Power Apparatus and Systems, 1983, vol.PAS-102, no.1, pp. 10-13. doi: 10.1109/tpas.1983.317991.

14. Kaplan M. Optimization of number, location, size, control type, and control setting of shunt capacitors on radial distribution feeders. IEEE Transactions on Power Apparatus and Systems, 1984, vol.PAS-103, no.9, pp. 2659-2665. doi: 10.1109/tpas.1984.318238.

15. Kaur H., Kumar P., Sharma A., Kamaiya N. A study on optimal capacitor placement in distribution system: Conventional and Artificial Intelligence techniques. 2015 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), Apr. 2015. doi: 10.1109/iccpeic.2015.7259457.

16. Lee S., Grainger J. Optimum placement of fixed and switched capacitors on primary distribution feeders. IEEE Transactions on Power Apparatus and Systems, 1981, vol.PAS-100, no.1, pp. 345-352. doi: 10.1109/tpas.1981.316862.

17. Ponnavsikko M., Rao K.S. Optimal choice of fixed and switched shunt capacitors on radial distributors by the method of local variations. IEEE Transactions on Power Apparatus and Systems, 1983, vol.PAS-102, no.6, pp. 1607-1615. doi: 10.1109/tpas.1983.317890.

18. Rinker R.E., Rembert D.L. Using the reactive current profile of a feeder to determine optimal capacitor placement. IEEE Transactions on Power Delivery, 1988, vol.3, no.1, pp. 411-416. doi: 10.1109/61.4272.

19. Schmill J.V. Optimum size and location of shunt capacitors on distribution feeders. IEEE Transactions on Power Apparatus and Systems, 1965, vol.84, no.9, pp. 825-832. doi: 10.1109/tpas.1965.4766262.

20. Su X., Masoum M.A.S., Wolfs P.J. PSO and improved BSFS based sequential comprehensive placement and real-time multi-objective control of delta-connected switched capacitors in unbalanced radial MV distribution networks. IEEE Transactions on Power Systems, 2016, vol.31, no.1, pp. 612-622. doi: 10.1109/tpwrs.2015.2398361.

21. Sundhararajan S., Pahwa A. Optimal selection of capacitors for radial distribution systems using a genetic algorithm. IEEE Transactions on Power Systems, 1994, vol.9, no.3, pp. 1499-1507. doi: 10.1109/59.336111.

22. Xu Y., Dong Z.Y., Wong K.P., Liu E., Yue B. Optimal capacitor placement to distribution transformers for power loss reduction in radial distribution systems. IEEE Transactions on Power Systems, 2013, vol.28, no.4, pp. 4072-4079. doi: 10.1109/tpwrs.2013.2273502.

23. Sajjadi S.M., Haghifam M.-R., Salehi J. Simultaneous placement of distributed generation and capacitors in distribution networks considering voltage stability index. International Journal of Electrical Power & Energy Systems, 2013, vol.46, pp. 366-375. doi: 10.1016/j.ijepes.2012.10.027.

24. Esmaeilian H.R., Darijany O., Mohammadian M. Optimal placement and sizing of DG units and capacitors simultaneously in radial distribution networks based on the voltage stability security margin. Turkish Journal of Electrical Engineering & Computer Science, 2014, p. 1-14. doi: 10.3906/elk-1203-7.

25. Pereira B.R., Martins da Costa G.R.M., Contreras J., Mantovani J.R.S. Optimal distributed generation and reactive power allocation in electrical distribution systems. IEEE Transactions on Sustainable Energy, 2016, vol.7, no.3, pp. 975-984. doi: 10.1109/tste.2015.2512819.

26. Dehghani M., Montazeri Z., Dehghani A., Seifi A.R. Spring search algorithm: A new meta-heuristic optimization algorithm inspired by Hooke's law. 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI). doi: 10.1109/kbei.2017.8324975.

27. Dehghani M., Montazeri Z., Dehghani A., Nouri N., Seifi A. BSSA: Binary spring search algorithm. 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Dec. 2017., pp. 0220-0224. doi: 10.1109/kbei.2017.8324977.

28. Dehghani M., Montazeri Z., Ehsanifar A., Seifi A.R., Ebadi M.J., Grechko O.M. Planning of energy carriers based on final energy consumption using dynamic programming and particle swarm optimization. Electrical engineering & electromechanics, 2018, no.5, pp. 62-71. doi: 10.20998/2074-272X.2018.5.10.

29. Montazeri Z., Niknam T. Optimal utilization of electrical energy from power plants based on final energy consumption using gravitational search algorithm. Electrical engineering & electromechanics, 2018, no.4, pp. 70-73. doi: 10.20998/2074-272X.2018.4.12.

30. Montazeri Z., Niknam T. Energy carriers management based on energy consumption. 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Dec. 2017. doi: 10.1109/kbei.2017.8325036.


Пристатейна бібліографія ГОСТ


1.     Daly P.A. Morrison J. Understanding the potential benefits of distributed generation on power delivery systems. 2001 Rural Electric Power Conference. Papers Presented at the 45th Annual Conference (Cat. No.01CH37214). doi: 10.1109/repcon.2001.949510.
2.     Gözel T., Hocaoglu M.H. An analytical method for the sizing and siting of distributed generators in radial systems. Electric Power Systems Research, 2009, vol.79, no.6, pp. 912-918. doi: 10.1016/j.epsr.2008.12.007.
3.     Wang C., Nehrir M.H. Analytical approaches for optimal placement of distributed generation sources in power systems. IEEE Transactions on Power Systems, 2004, vol.19, no.4, pp. 2068-2076. doi: 10.1109/tpwrs.2004.836189.
4.     Abou El-Ela A.A., Allam S.M., Shatla M.M. Maximal optimal benefits of distributed generation using genetic algorithms. Electric Power Systems Research, 2010, vol.80, no.7, pp. 869-877. doi: 10.1016/j.epsr.2009.12.021.
5.     Barin A., Pozzatti L.F., Canha L.N., Machado R.Q., Abaide A.R., Arend G. Multi-objective analysis of impacts of distributed generation placement on the operational characteristics of networks for distribution system planning. International Journal of Electrical Power & Energy Systems, 2010, vol.32, no.10, pp. 1157-1164. doi: 10.1016/j.ijepes.2010.06.015.
6.     Ghosh S., Ghoshal S.P., Ghosh S. Optimal sizing and placement of distributed generation in a network system. International Journal of Electrical Power & Energy Systems, 2010, vol.32, no.8, pp. 849-856. doi: 10.1016/j.ijepes.2010.01.029.
7.     Ettehadi M., Ghasemi H., Vaez-Zadeh S. Voltage stability-based DG placement in distribution networks. IEEE Transactions on Power Delivery, 2013, vol.28, no.1, pp. 171-178. doi: 10.1109/tpwrd.2012.2214241.
8.     Wang Z., Chen B., Wang J., Begovic M.M. Stochastic DG placement for conservation voltage reduction based on multiple replications procedure. IEEE Transactions on Power Delivery, 2015, vol.30, no.3, pp. 1039-1047. doi: 10.1109/tpwrd.2014.2331275.
9.     Rahmani-andebili M. Distributed generation placement planning modeling feeder’s failure rate and customer’s load type. IEEE Transactions on Industrial Electronics, 2016, vol.63, no.3, pp. 1598-1606. doi: 10.1109/tie.2015.2498902.
10.  Baran M.E., Wu F.F. Optimal capacitor placement on radial distribution systems. IEEE Transactions on Power Delivery, 1989, vol.4, no.1, pp. 725-734. doi: 10.1109/61.19265.
11.  Chiang H.-D., Wang J.-C., Cockings O., Shin H.-D. Optimal capacitor placements in distribution systems. I. A new formulation and the overall problem. IEEE Transactions on Power Delivery, 1990, vol.5, no.2, pp. 634-642. doi: 10.1109/61.53065.
12.  Dura H. Optimum number, location, and size of shunt capacitors in radial distribution feeders a dynamic programming approach. IEEE Transactions on Power Apparatus and Systems, 1968, vol.PAS-87, no.9, pp. 1769-1774. doi: 10.1109/tpas.1968.291982.
13.  Fawzi T., El-sobki S., Abdel-halim M. New approach for the application of shunt capacitors to the primary distribution feeders. IEEE Transactions on Power Apparatus and Systems, 1983, vol.PAS-102, no.1, pp. 10-13. doi: 10.1109/tpas.1983.317991.
14.  Kaplan M. Optimization of number, location, size, control type, and control setting of shunt capacitors on radial distribution feeders. IEEE Transactions on Power Apparatus and Systems, 1984, vol.PAS-103, no.9, pp. 2659-2665. doi: 10.1109/tpas.1984.318238.
15.  Kaur H., Kumar P., Sharma A., Kamaiya N. A study on optimal capacitor placement in distribution system: Conventional and Artificial Intelligence techniques. 2015 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), Apr. 2015. doi: 10.1109/iccpeic.2015.7259457.
16.  Lee S., Grainger J. Optimum placement of fixed and switched capacitors on primary distribution feeders. IEEE Transactions on Power Apparatus and Systems, 1981, vol.PAS-100, no.1, pp. 345-352. doi: 10.1109/tpas.1981.316862.
17.  Ponnavsikko M., Rao K.S. Optimal choice of fixed and switched shunt capacitors on radial distributors by the method of local variations. IEEE Transactions on Power Apparatus and Systems, 1983, vol.PAS-102, no.6, pp. 1607-1615. doi: 10.1109/tpas.1983.317890.
18.  Rinker R.E., Rembert D.L. Using the reactive current profile of a feeder to determine optimal capacitor placement. IEEE Transactions on Power Delivery, 1988, vol.3, no.1, pp. 411-416. doi: 10.1109/61.4272.
19.  Schmill J.V. Optimum size and location of shunt capacitors on distribution feeders. IEEE Transactions on Power Apparatus and Systems, 1965, vol.84, no.9, pp. 825-832. doi: 10.1109/tpas.1965.4766262.
20.  Su X., Masoum M.A.S., Wolfs P.J. PSO and improved BSFS based sequential comprehensive placement and real-time multi-objective control of delta-connected switched capacitors in unbalanced radial MV distribution networks. IEEE Transactions on Power Systems, 2016, vol.31, no.1, pp. 612-622. doi: 10.1109/tpwrs.2015.2398361.
21.  Sundhararajan S., Pahwa A. Optimal selection of capacitors for radial distribution systems using a genetic algorithm. IEEE Transactions on Power Systems, 1994, vol.9, no.3, pp. 1499-1507. doi: 10.1109/59.336111.
22.  Xu Y., Dong Z.Y., Wong K.P., Liu E., Yue B. Optimal capacitor placement to distribution transformers for power loss reduction in radial distribution systems. IEEE Transactions on Power Systems, 2013, vol.28, no.4, pp. 4072-4079. doi: 10.1109/tpwrs.2013.2273502.
23.  Sajjadi S.M., Haghifam M.-R., Salehi J. Simultaneous placement of distributed generation and capacitors in distribution networks considering voltage stability index. International Journal of Electrical Power & Energy Systems, 2013, vol.46, pp. 366-375. doi: 10.1016/j.ijepes.2012.10.027.
24.  Esmaeilian H.R., Darijany O., Mohammadian M. Optimal placement and sizing of DG units and capacitors simultaneously in radial distribution networks based on the voltage stability security margin. Turkish Journal of Electrical Engineering & Computer Science, 2014, p. 1-14. doi: 10.3906/elk-1203-7.
25.  Pereira B.R., Martins da Costa G.R.M., Contreras J., Mantovani J.R.S. Optimal distributed generation and reactive power allocation in electrical distribution systems. IEEE Transactions on Sustainable Energy, 2016, vol.7, no.3, pp. 975-984. doi: 10.1109/tste.2015.2512819.
26.  Dehghani M., Montazeri Z., Dehghani A., Seifi A.R. Spring search algorithm: A new meta-heuristic optimization algorithm inspired by Hooke's law. 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI). doi: 10.1109/kbei.2017.8324975.
27.  Dehghani M., Montazeri Z., Dehghani A., Nouri N., Seifi A. BSSA: Binary spring search algorithm. 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Dec. 2017., pp. 0220-0224. doi: 10.1109/kbei.2017.8324977.
28.  Dehghani M., Montazeri Z., Ehsanifar A., Seifi A.R., Ebadi M.J., Grechko O.M. Planning of energy carriers based on final energy consumption using dynamic programming and particle swarm optimization. Electrical engineering & electromechanics, 2018, no.5, pp. 62-71. doi: 10.20998/2074-272X.2018.5.10.
29.  Montazeri Z., Niknam T. Optimal utilization of electrical energy from power plants based on final energy consumption using gravitational search algorithm. Electrical engineering & electromechanics, 2018, no.4, pp. 70-73. doi: 10.20998/2074-272X.2018.4.12.
30.  Montazeri Z., Niknam T. Energy carriers management based on energy consumption. 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Dec. 2017. doi: 10.1109/kbei.2017.8325036.




Copyright (c) 2018 M. Dehghani, M. Mardaneh, Z. Montazeri, A. Ehsanifar, M.J. Ebadi, O. M. Grechko


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2074–272X (Print)
ІSSN 2309–3404 (Online)