SPRING SEARCH ALGORITHM FOR SIMULTANEOUS PLACEMENT OF DISTRIBUTED GENERATION AND CAPACITORS

Authors

DOI:

https://doi.org/10.20998/2074-272X.2018.6.10

Keywords:

DG placement, capacitor placement, distribution network, SSA, sensitive index, two-stage simultaneous placement

Abstract

Purpose. In this paper, for simultaneous placement of distributed generation (DG) and capacitors, a new approach based on Spring Search Algorithm (SSA), is presented. This method is contained two stages using two sensitive index Sv and Ss. Sv and Ss are calculated according to nominal voltage and network losses. In the first stage, candidate buses are determined for installation DG and capacitors according to Sv and Ss, Then in the second stage, placement and sizing of distributed generation and capacitors are specified using SSA. The spring search algorithm is among the optimization algorithms developed by the idea of laws of nature and the search factors are a set of objects. The proposed algorithm is tested on 33-bus and 69-bus radial distribution networks. The test results indicate good performance of the proposed method.

Author Biographies

M. Dehghani, Shiraz University

Department of Electrical and Electronics Engineering

M. Mardaneh, Shiraz University of Technology

Department of Electrical and Electronics Engineering

Z. Montazeri, Islamic Azad University of Marvdasht

Department of Electrical Engineering

A. Ehsanifar, Shiraz University

Department of Power and Control

M.J. Ebadi, Chabahar Maritime University

Faculty of Marine Science

O. M. Grechko, National Technical University «Kharkiv Polytechnic Institute»

Dept. of Electrical Apparatus

References

1. Daly P.A. Morrison J. Understanding the potential benefits of distributed generation on power delivery systems. 2001 Rural Electric Power Conference. Papers Presented at the 45th Annual Conference (Cat. No.01CH37214). doi: 10.1109/repcon.2001.949510.

2. Gözel T., Hocaoglu M.H. An analytical method for the sizing and siting of distributed generators in radial systems. Electric Power Systems Research, 2009, vol.79, no.6, pp. 912-918. doi: 10.1016/j.epsr.2008.12.007.

3. Wang C., Nehrir M.H. Analytical approaches for optimal placement of distributed generation sources in power systems. IEEE Transactions on Power Systems, 2004, vol.19, no.4, pp. 2068-2076. doi: 10.1109/tpwrs.2004.836189.

4. Abou El-Ela A.A., Allam S.M., Shatla M.M. Maximal optimal benefits of distributed generation using genetic algorithms. Electric Power Systems Research, 2010, vol.80, no.7, pp. 869-877. doi: 10.1016/j.epsr.2009.12.021.

5. Barin A., Pozzatti L.F., Canha L.N., Machado R.Q., Abaide A.R., Arend G. Multi-objective analysis of impacts of distributed generation placement on the operational characteristics of networks for distribution system planning. International Journal of Electrical Power & Energy Systems, 2010, vol.32, no.10, pp. 1157-1164. doi: 10.1016/j.ijepes.2010.06.015.

6. Ghosh S., Ghoshal S.P., Ghosh S. Optimal sizing and placement of distributed generation in a network system. International Journal of Electrical Power & Energy Systems, 2010, vol.32, no.8, pp. 849-856. doi: 10.1016/j.ijepes.2010.01.029.

7. Ettehadi M., Ghasemi H., Vaez-Zadeh S. Voltage stability-based DG placement in distribution networks. IEEE Transactions on Power Delivery, 2013, vol.28, no.1, pp. 171-178. doi: 10.1109/tpwrd.2012.2214241.

8. Wang Z., Chen B., Wang J., Begovic M.M. Stochastic DG placement for conservation voltage reduction based on multiple replications procedure. IEEE Transactions on Power Delivery, 2015, vol.30, no.3, pp. 1039-1047. doi: 10.1109/tpwrd.2014.2331275.

9. Rahmani-andebili M. Distributed generation placement planning modeling feeder’s failure rate and customer’s load type. IEEE Transactions on Industrial Electronics, 2016, vol.63, no.3, pp. 1598-1606. doi: 10.1109/tie.2015.2498902.

10. Baran M.E., Wu F.F. Optimal capacitor placement on radial distribution systems. IEEE Transactions on Power Delivery, 1989, vol.4, no.1, pp. 725-734. doi: 10.1109/61.19265.

11. Chiang H.-D., Wang J.-C., Cockings O., Shin H.-D. Optimal capacitor placements in distribution systems. I. A new formulation and the overall problem. IEEE Transactions on Power Delivery, 1990, vol.5, no.2, pp. 634-642. doi: 10.1109/61.53065.

12. Dura H. Optimum number, location, and size of shunt capacitors in radial distribution feeders a dynamic programming approach. IEEE Transactions on Power Apparatus and Systems, 1968, vol.PAS-87, no.9, pp. 1769-1774. doi: 10.1109/tpas.1968.291982.

13. Fawzi T., El-sobki S., Abdel-halim M. New approach for the application of shunt capacitors to the primary distribution feeders. IEEE Transactions on Power Apparatus and Systems, 1983, vol.PAS-102, no.1, pp. 10-13. doi: 10.1109/tpas.1983.317991.

14. Kaplan M. Optimization of number, location, size, control type, and control setting of shunt capacitors on radial distribution feeders. IEEE Transactions on Power Apparatus and Systems, 1984, vol.PAS-103, no.9, pp. 2659-2665. doi: 10.1109/tpas.1984.318238.

15. Kaur H., Kumar P., Sharma A., Kamaiya N. A study on optimal capacitor placement in distribution system: Conventional and Artificial Intelligence techniques. 2015 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), Apr. 2015. doi: 10.1109/iccpeic.2015.7259457.

16. Lee S., Grainger J. Optimum placement of fixed and switched capacitors on primary distribution feeders. IEEE Transactions on Power Apparatus and Systems, 1981, vol.PAS-100, no.1, pp. 345-352. doi: 10.1109/tpas.1981.316862.

17. Ponnavsikko M., Rao K.S. Optimal choice of fixed and switched shunt capacitors on radial distributors by the method of local variations. IEEE Transactions on Power Apparatus and Systems, 1983, vol.PAS-102, no.6, pp. 1607-1615. doi: 10.1109/tpas.1983.317890.

18. Rinker R.E., Rembert D.L. Using the reactive current profile of a feeder to determine optimal capacitor placement. IEEE Transactions on Power Delivery, 1988, vol.3, no.1, pp. 411-416. doi: 10.1109/61.4272.

19. Schmill J.V. Optimum size and location of shunt capacitors on distribution feeders. IEEE Transactions on Power Apparatus and Systems, 1965, vol.84, no.9, pp. 825-832. doi: 10.1109/tpas.1965.4766262.

20. Su X., Masoum M.A.S., Wolfs P.J. PSO and improved BSFS based sequential comprehensive placement and real-time multi-objective control of delta-connected switched capacitors in unbalanced radial MV distribution networks. IEEE Transactions on Power Systems, 2016, vol.31, no.1, pp. 612-622. doi: 10.1109/tpwrs.2015.2398361.

21. Sundhararajan S., Pahwa A. Optimal selection of capacitors for radial distribution systems using a genetic algorithm. IEEE Transactions on Power Systems, 1994, vol.9, no.3, pp. 1499-1507. doi: 10.1109/59.336111.

22. Xu Y., Dong Z.Y., Wong K.P., Liu E., Yue B. Optimal capacitor placement to distribution transformers for power loss reduction in radial distribution systems. IEEE Transactions on Power Systems, 2013, vol.28, no.4, pp. 4072-4079. doi: 10.1109/tpwrs.2013.2273502.

23. Sajjadi S.M., Haghifam M.-R., Salehi J. Simultaneous placement of distributed generation and capacitors in distribution networks considering voltage stability index. International Journal of Electrical Power & Energy Systems, 2013, vol.46, pp. 366-375. doi: 10.1016/j.ijepes.2012.10.027.

24. Esmaeilian H.R., Darijany O., Mohammadian M. Optimal placement and sizing of DG units and capacitors simultaneously in radial distribution networks based on the voltage stability security margin. Turkish Journal of Electrical Engineering & Computer Science, 2014, p. 1-14. doi: 10.3906/elk-1203-7.

25. Pereira B.R., Martins da Costa G.R.M., Contreras J., Mantovani J.R.S. Optimal distributed generation and reactive power allocation in electrical distribution systems. IEEE Transactions on Sustainable Energy, 2016, vol.7, no.3, pp. 975-984. doi: 10.1109/tste.2015.2512819.

26. Dehghani M., Montazeri Z., Dehghani A., Seifi A.R. Spring search algorithm: A new meta-heuristic optimization algorithm inspired by Hooke's law. 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI). doi: 10.1109/kbei.2017.8324975.

27. Dehghani M., Montazeri Z., Dehghani A., Nouri N., Seifi A. BSSA: Binary spring search algorithm. 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Dec. 2017., pp. 0220-0224. doi: 10.1109/kbei.2017.8324977.

28. Dehghani M., Montazeri Z., Ehsanifar A., Seifi A.R., Ebadi M.J., Grechko O.M. Planning of energy carriers based on final energy consumption using dynamic programming and particle swarm optimization. Electrical engineering & electromechanics, 2018, no.5, pp. 62-71. doi: 10.20998/2074-272X.2018.5.10.

29. Montazeri Z., Niknam T. Optimal utilization of electrical energy from power plants based on final energy consumption using gravitational search algorithm. Electrical engineering & electromechanics, 2018, no.4, pp. 70-73. doi: 10.20998/2074-272X.2018.4.12.

30. Montazeri Z., Niknam T. Energy carriers management based on energy consumption. 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Dec. 2017. doi: 10.1109/kbei.2017.8325036.

Downloads

Published

2018-12-12

How to Cite

Dehghani, M., Mardaneh, M., Montazeri, Z., Ehsanifar, A., Ebadi, M., & Grechko, O. M. (2018). SPRING SEARCH ALGORITHM FOR SIMULTANEOUS PLACEMENT OF DISTRIBUTED GENERATION AND CAPACITORS. Electrical Engineering & Electromechanics, (6), 68–73. https://doi.org/10.20998/2074-272X.2018.6.10

Issue

Section

Power Stations, Grids and Systems