ON THE INFLUENCE OF THE LEVEL OF AN EXTERNAL MAGNETIC FIELD AND THE LENGTH ON THE MAGNETIC MOMENT OF CYLINDRICAL CORES

Authors

DOI:

https://doi.org/10.20998/2074-272X.2018.6.07

Keywords:

electromagnet, spacecraft control system, non-uniformly magnetized core, integral equation, fictitious magnetic charge, magnetization curve, magnetic moment of the core

Abstract

Purpose. Analysis of inhomogeneous magnetization of long cylindrical permalloy 50N cores by a uniform constant magnetic field and the influence of length and field level on their magnetic moment. Methodology. The magnetostatic field of a non-uniformly magnetized in a uniform magnetic field long cylindrical core of an electromagnet of a spacecraft control system is considered. To calculate this field, a transformation of the integral equation with respect to the density of fictitious magnetic charges, as well as an iterative algorithm for its numerical solution, are proposed. Results. The convergence of the algorithm and the fact that the magnetic moment of the core depends heavily on its length and the level of the external magnetic field is shown. We have made an analysis of the influence of the length of a permalloy 50N core in the entire range of the magnetization curve and the level of a uniform external magnetic field on the axial projection of the magnetic moment of the core. Originality. The use of an almost equal distribution of the axial projection of the resulting magnetic field in the cross sections of the greater part of the cylindrical core and its division into cylindrical elements can significantly reduce the order of the system of algebraic equations approximating the integral equation for the surface density of fictitious magnetic charges for its numerical solution. Practical value. Recommendations regarding the level of the external field created by the electromagnet coil, the increase of the magnetic moment in cases of long cores and the choice of the number of cylindrical elements depending on the length of the core are given. 

References

1. Chadebec O., Rouve L.-L., Coulomb J.-L. New methods for a fast and easy computation of stray fields created by wound rods. IEEE Transaction on Magnetics, 2002, vol.38, no.2, pp. 517-520. doi: 10.1109/20.996136.

2. Kovalenko A.P. Magnitnye sistemy upravleniia kosmicheskimi letatel'nymi apparatami [Magnetic control systems for space vehicles].Moscow, Mashinostroenie Publ., 1975. 248 p. (Rus).

3. Rozenblat M.A. Demagnetization factors for high permeability rods. Technical Physics, 1954, vol.24, no.4, pp. 637-661. (Rus).

4. Chen D.X., Pardo E., Sanchez A. Fluxmetric and magnetometric demagnetizing factors for cylinders. Journal of Magnetism and Magnetic Materials, 2006, vol.306, pp. 135-146. doi: 10.1016/j.jmmm.2006.02.235.

5. Matiuk V.F., Osipov A.A., Streliukhin A.V. Modeling of the magnetic state of a ferromagnetic rod in longitudinal constant magnetic field. Technical Diagnostics and Non-Destructive Testing, 2011, no.1, pp. 20-27. (Rus).

6. Grinberg G.A. Izbrannye voprosy matematicheskoi teorii elektricheskikh i magnitnykh iavlenii [Selected questions of mathematical theory of electric and magnetic phenomena]. Moscow-Leningrad, Acad. of Sci.USSR Publ., 1948. 730 p. (Rus).

7. Tozoni O.V., Maergoiz I.D. Raschet trekhmernykh elektromagnitnykh polei [Calculation of three-dimensional electromagnetic fields].Kiev, Tekhnika Publ., 1974. 352 p. (Rus).

8. Mikhailov V.M., Chunikhin K.V. On electrostatic analogy of magnetostatic field in inhomogeneous magnetized medium. Electrical engineering & electromechanics, 2017, no.5, pp. 38-40. (Rus). doi: 10.20998/2074-272X.2017.5.05.

9. Jungerman J.A. Fourth-order uniform electric field form two charged rings. Review of Scientific Instruments, 1984, vol.55, no.9, pp. 1479-1482. doi: 10.1063/1.1137962.

10. Mikhailov V.M. Raschet elektricheskikh i magnitnykh polei s pomoshch'iu integral'nykh i integrodifferentsial'nykh uravnenii [Calculation of electric and magnetic fields using integral and integrodifferential equations].Kiev, UMC VO Publ., 1988. 60 p. (Rus).

11. Ianke E., Emde F., Lesh F. Spetsial'nye funktsii [Special functions].Moscow, Nauka Publ., 1977. 344 p. (Rus).

12. Mikhailov V.M., Chunikhin K.V. Testing of numerical solution of the problem of determining sources of magnetostatic field in magnetized medium. Electrical engineering & electromechanics, 2017, no.6, pp. 42-46. (Rus). doi: 10.20998/2074-272X.2017.6.06.

13. Polivanov K.M. Teoreticheskie osnovy elektrotekhniki, ch. 3. Teoriia elektromagnitnogo polia [Theoretical foundations of electrical engineering, Part 3. Theory of electromagnetic field].Moscow, Energiya Publ., 1969. 352 p. (Rus).

14. Kurbatov P.A., Arinchin S.A. Chislennyi raschet elektromagnitnykh polei [Numerical Calculation of Electromagnetic Fields].Moscow, Energoatomizdat Publ., 1984. 168 p. (Rus).

Published

2018-12-12

How to Cite

Chunikhin, K. V. (2018). ON THE INFLUENCE OF THE LEVEL OF AN EXTERNAL MAGNETIC FIELD AND THE LENGTH ON THE MAGNETIC MOMENT OF CYLINDRICAL CORES. Electrical Engineering & Electromechanics, (6), 51–55. https://doi.org/10.20998/2074-272X.2018.6.07

Issue

Section

Theoretical Electrical Engineering