• Mohamed Benkahla Hassiba Benbouali University, Algeria
  • Rachid Taleb Hassiba Benbouali University, Algeria https://orcid.org/0000-0002-9874-0423
  • Zinelaabidine Boudjema Hassiba Benbouali University, Algeria




wind turbine, doubly fed induction generator, sliding mode controller, adaptive sliding mode controller, adaptive fuzzy sliding mode controller, multilevel inverter


This article presents the powers control of a variable speed wind turbine based on a doubly fed induction generator (DFIG) because of their advantages in terms of economy and control. The considered system consists of a DFIG whose stator is connected directly to the electrical network and its rotor is supplied by a 19-level inverter with less number of switches for minimize the harmonics absorbed by the DFIG, reducing switching frequency, high power electronic applications because of their ability to generate a very good quality of waveforms, and their low voltage stress across the power devices. In order to control independently active and reactive powers provided by the stator side of the DFIG to the grid and ensure high performance and a better execution, three types of robust controllers have been studied and compared in terms of power reference tracking, response to sudden speed variations, sensitivity to perturbations and robustness against machine parameters variations.

Author Biographies

Mohamed Benkahla, Hassiba Benbouali University

Electrical Engineering Department

Rachid Taleb, Hassiba Benbouali University

Electrical Engineering Department

Zinelaabidine Boudjema, Hassiba Benbouali University

Electrical Engineering Department


1. Ellabban O., Abu-Rub H., Blaabjerg F. Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 2014, vol.39, pp. 748-764. doi: 10.1016/j.rser.2014.07.113.

2. de Bessa I.V., Palhares R.M., D’Angelo M.F.S.V., Chaves Filho J.E. Data-driven fault detection and isolation scheme for a wind turbine benchmark. Renewable Energy, 2016, vol.87, pp. 634-645. doi: 10.1016/j.renene.2015.10.061.

3. GWEC: Global Wind Energy Outlook 2014. Available at: http://www.gwec.net/wp-content/uploads/2014/10/GWEO2014_WEB.pdf (accessed 02 May 2017).

4. World Wind Energy Market Update, Navigant Research, 2015. Available at: http://www.provedor.nuca.ie.ufrj.br/estudos/navigant1.pdf (accessed 15 October 2016).

5. Cardenas R., Pena R., Alepuz S., Asher G. Overview of Control Systems for the Operation of DFIGs in Wind Energy Applications, IEEE Transactions on Industrial Electronics, 2013, vol.60, no.7, pp. 2776-2798. doi: 10.1109/tie.2013.2243372.

6. Tazil M., Kumar V., Bansal R.C., Kong S., Dong Z.Y., Freitas W. Three-phase doubly fed induction generators: an overview. IET Electric Power Applications, 2010, vol.4, no.2, p. 75. doi: 10.1049/iet-epa.2009.0071.

7. Marques G.D., Sousa D.M. Air-Gap-Power-Vector-Based Sensorless Method for DFIG Control Without Flux Estimator. IEEE Transactions on Industrial Electronics, 2011, vol.58, no.10, pp. 4717-4726. doi: 10.1109/tie.2011.2107716.

8. Kamh M.Z., Iravani R. Three-Phase Steady-State Model of Type-3 Wind Generation Unit – Part I: Mathematical Models. IEEE Transactions on Sustainable Energy, 2011, vol.2, no.4, pp. 477-486. doi: 10.1109/tste.2011.2156821.

9. Jadhav H.T., Roy R. A comprehensive review on the grid integration of doubly fed induction generator. International Journal of Electrical Power & Energy Systems, 2013, vol.49, pp. 8-18. doi: 10.1016/j.ijepes.2012.11.020.

10. Boudjema Z., Taleb R., Yahdou A., Bouyekni A. Fuzzy second order sliding mode control of a doubly-fed induction machine supplied by two matrix converters. Journal of Electrical Engineering, 2015, vol.15, no.3, pp. 308-317.

11. Rahimi M. Drive train dynamics assessment and speed controller design in variable speed wind turbines. Renewable Energy, 2016, vol.89, pp. 716-729. doi: 10.1016/j.renene.2015.12.040.

12. Talha A., Berkouk El Madjid, Francois B., Boucherit M.S. Modeling and Control of a Power Electronic Cascade for the Multi DC Bus Supply of a Seven-Level NPC Voltage Source Inverter. 2006 12th International Power Electronics and Motion Control Conference, Aug. 2006. doi: 10.1109/epepemc.2006.4778399.

13. Rodriguez J., Bernet S., Steimer P.K., Lizama I.E. A Survey on Neutral-Point-Clamped Inverters. IEEE Transactions on Industrial Electronics, 2010, vol.57, no.7, pp. 2219-2230. doi: 10.1109/tie.2009.2032430.

14. Huang Jing, Corzine K.A. Extended operation of flying capacitor multilevel inverters. IEEE Transactions on Power Electronics, 2006, vol.21, no.1, pp. 140-147. doi: 10.1109/tpel.2005.861108.

15. Babaei E. A Cascade Multilevel Converter Topology With Reduced Number of Switches. IEEE Transactions on Power Electronics, 2008, vol.23, no.6, pp. 2657-2664. doi: 10.1109/tpel.2008.2005192.

16. Kouro S., Malinowski M., Gopakumar K., Pou J., Franquelo L.G., Bin Wu, Rodriguez J., Pérez M.A., Leon J.I. Recent Advances and Industrial Applications of Multilevel Converters. IEEE Transactions on Industrial Electronics, 2010, vol.57, no.8, pp. 2553-2580. doi: 10.1109/tie.2010.2049719.

17. Tolbert L.M., Fang Zheng Peng, Habetler T.G. Multilevel converters for large electric drives. IEEE Transactions on Industry Applications, 1999, vol.35, no.1, pp. 36-44. doi: 10.1109/28.740843.

18. Rodriguez J., Franquelo L.G., Kouro S., Leon J.I., Portillo R.C., Prats M.A.M., Perez M.A. Multilevel Converters: An Enabling Technology for High-Power Applications. Proceedings of the IEEE, 2009 vol.97, no.11, pp. 1786-1817. doi: 10.1109/jproc.2009.2030235.

19. Song-Manguelle J., Mariethoz S., Veenstra M., Rufer A.A Generalized Design Principle of a Uniform Step Asymmetrical Multilevel Converter for High Power Conversion. European Conference on Power Electronics and Applications, EPE’01, Graz, Austria, August 2001.

20. López J., Sanchis P., Roboam X., Marroyo L. Dynamic Behavior of the Doubly Fed Induction Generator During Three-Phase Voltage Dips. IEEE Transactions on Energy Conversion, 2007, vol.22, no.3, pp. 709-717. doi: 10.1109/tec.2006.878241.

21. Boudjema Z., Taleb R., Yahdou A. A New DTC Scheme using Second Order Sliding Mode and Fuzzy Logic of a DFIG for Wind Turbine System. International Journal of Advanced Computer Science and Applications, 2016, vol.7, no.8. doi: 10.14569/ijacsa.2016.070808.

22. Li L.-B., Sun L.-L., Zhang S.-Z., Yang Q.-Q. Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control. ISA Transactions, 2015, vol.58, pp. 635-649. doi: 10.1016/j.isatra.2015.07.010.

23. Chen H., Ding K., Zhou X., Fu K., Qu Y. A novel adaptive sliding mode control of PWM rectifier under unbalanced grid voltage conditions based on direct power control. Proceedings of the 33rd Chinese Control Conference, Jul. 2014. doi: 10.1109/chicc.2014.6896603.

24. Sahoo S.R., Brisilla R.M., Sankaranarayanan V. Disturbance observer based adaptive sliding mode control: An application to single machine infinite bus power system. 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Feb. 2015. doi: 10.1109/spices.2015.7091544.

25. Lee D., Vukovich G. Adaptive sliding mode control for spacecraft body-fixed hovering in the proximity of an asteroid. Aerospace Science and Technology, 2015, vol.46, pp. 471-483. doi: 10.1016/j.ast.2015.09.001.

26. Shahriari kahkeshi M., Sheikholeslam F., Zekri M. Design of adaptive fuzzy wavelet neural sliding mode controller for uncertain nonlinear systems. ISA Transactions, 2013, vol.52, no.3, pp. 342-350. doi: 10.1016/j.isatra.2013.01.004.

27. Do H.T., Park H.G., Ahn K.K. Application of an adaptive fuzzy sliding mode controller in velocity control of a secondary controlled hydrostatic transmission system. Mechatronics, 2014, vol.24, no.8, pp. 1157-1165. doi: 10.1016/j.mechatronics.2014.09.003.

28. Khazaee M., Markazi A.H.D., Omidi E. Adaptive fuzzy predictive sliding control of uncertain nonlinear systems with bound-known input delay. ISA Transactions, 2015, vol.59, pp. 314-324. doi: 10.1016/j.isatra.2015.10.010.

29. Mirzaei M., Nia F.S., Mohammadi H. Applying adaptive fuzzy sliding mode control to an underactuated system. The 2nd International Conference on Control, Instrumentation and Automation, Dec. 2011. doi: 10.1109/icciautom.2011.6356736.

30. Zou Y., Elbuluk M.E., Sozer Y. Stability Analysis of Maximum Power Point Tracking (MPPT) Method in Wind Power Systems. IEEE Transactions on Industry Applications, 2013, vol.49, no.3, pp. 1129-1136. doi: 10.1109/tia.2013.2251854.

31. Taleb R., Derrouazin A. USAMI Control with a Higher Order Harmonics Elimination Strategy based on the Resultant Theory. International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability,TMREES’14, Beirut, Lebanon, 10-13 April 2014.

32. Bouchafaa F. Etude et commande de différentes cascades à onduler à neuf niveaux à structure NPC. Application à la conduite d’une MSAP, Ph.D. thesis, ENP, Algiers, Algeria, 2008. (Fra).

33. Abdin E.S., Xu W. Control design and dynamic performance analysis of a wind turbine-induction generator unit. IEEE Transactions on Energy Conversion, 2000, vol.15, no.1, pp. 91-96. doi: 10.1109/60.849122.

34. Huang Y.-J., Kuo T.-C., Chang S.-H. Adaptive Sliding-Mode Control for Nonlinear Systems With Uncertain Parameters. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2008, vol.38, no.2, pp. 534-539. doi: 10.1109/tsmcb.2007.910740.




How to Cite

Benkahla, M., Taleb, R., & Boudjema, Z. (2018). A NEW ROBUST CONTROL USING ADAPTIVE FUZZY SLIDING MODE CONTROL FOR A DFIG SUPPLIED BY A 19-LEVEL INVERTER WITH LESS NUMBER OF SWITCHES. Electrical Engineering & Electromechanics, (4), 11–19. https://doi.org/10.20998/2074-272X.2018.4.02



Electrotechnical complexes and Systems

Most read articles by the same author(s)