SLIDING MODE CONTROL OF THE DFIG USED IN WIND ENERGY SYSTEM

Authors

  • Hachemi Glaoui Tahri Mohamed Bechar University, Algeria
  • Abdelkader Harrouz Ahmed Draia University, Algeria

DOI:

https://doi.org/10.20998/2074-272X.2018.3.08

Keywords:

doubly fed induction generators (DFIG), vector control, sliding mode control

Abstract

This paper, presents the application of the direct vector control using the sliding mode control (SMC) on the doubly fed induction generators (DFIG). The synthesis of the control laws is based on the model obtained by the orientation of the stator flux. The active and reactive powers that are generated by the doubly fed induction generators will be decoupled by the orientation of the stator flux and controlled by sliding mode controllers that have been developed. In order to rule on the validity as well as the performance of this type of adjustment, we will check its robustness by varying some parameters of the machine doubly fed induction.

Author Biographies

Hachemi Glaoui, Tahri Mohamed Bechar University

Department of Electrical Engineering

Abdelkader Harrouz, Ahmed Draia University

Department of Hydrocarbon and Renewable Energy

References

1. Johnstone C.M., Nielsen K., Lewis T., Sarmento A., Lemonis G. EC FPVI co-ordinated action on ocean energy: A European platform ford sharing technical information and research outcomes in wave and tidal energy systems. Renewable Energy, 2006, vol.31, no.2, pp. 191-196. doi: 10.1016/j.renene.2005.08.015.

2. Ben Elghali S.E. et al. Les systèmes de génération d’énergie électriques à partir des courants de mare. Revue 3EI, 2008, no.52, pp. 73-85.

3. Benbouzid M.E.H. et al. Marine tidal current electric power generation technology: State of the art and current status. Proceedings of IEEE IEMDC'07, May 2007, Antalya (Turkey), vol.2, pp. 1407-1412.

4. Myers L., Bahaj A.S. Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race. Renewable Energy, 2005, vol.30, no.11, pp. 1713-1731. doi: 10.1016/j.renene.2005.02.008.

5. Couch S.J., Bryden I. Tidal current energy extraction: Hydrodynamic resource characteristics. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2006, vol.220, no.4, pp. 185-194. doi: 10.1243/14750902jeme50.

6. Taraft S., Rekioua D., Aouzellag D., Bacha S. A proposed strategy for power optimization of a wind energy conversion system connected to the grid. Energy Conversion and Management, 2015, vol.101, pp. 489-502. doi: 10.1016/j.enconman.2015.05.047.

7. Mobayen S., Tchier F. Robust global second-order sliding mode control with adaptive parameter-tuning law for perturbed dynamical systems. Transactions of the Institute of Measurement and Control, June 2017, p. 014233121770883. doi: 10.1177/0142331217708832.

8. Ansarifar G.R., Rafiei, M. Second-order sliding-mode control for a pressurized water nuclear reactor considering the xenon concentration feedback. Nuclear Engineering and Technology, 2015, vol.47, no.1, pp. 94-101. doi: 10.1016/j.net.2014.11.003.

9. Bartolini G., Levant A., Pisano A., Usai E. Adaptive second-order sliding mode control with uncertainty compensation. International Journal of Control, 2016, vol.89, no.9, pp. 1747-1758. doi: 10.1080/00207179.2016.1142616.

10. Benbouzid M., Beltran B., Mangel H., Mamoune A. A high-order sliding mode observer for sensorless control of DFIG-based wind turbines. IECON 2012 – 38th Annual Conference on IEEE Industrial Electronics Society, Oct. 2012, Montreal, Canada. pp. 4288-4292. doi: 10.1109/iecon.2012.6389200.

11. Evangelista C.A., Valenciaga F., Puleston P. Multivariable 2-sliding mode control for a wind energy system based on a double fed induction generator. International Journal of Hydrogen Energy, 2012, vol.37, no.13, pp. 10070-10075. doi: 10.1016/j.ijhydene.2011.12.080.

12. Sun H., Han Y., Zhang L. Maximum Wind Power Tracking of Doubly Fed Wind Turbine System Based on Adaptive Gain Second-Order Sliding Mode. Journal of Control Science and Engineering, vol. 2018, pp. 1-11. doi: 10.1155/2018/5342971.

13. Kassem A.M., Hasaneen K.M., Yousef A.M. Dynamic modeling and robust power control of DFIG driven by wind turbine at infinite grid. International Journal of Electrical Power & Energy Systems, 2013, vol.44, no.1, pp. 375-382. doi: 10.1016/j.ijepes.2011.06.038.

14. Belmokhtar K., Doumbia M.L., Agbossou K. Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator). Energy, 2014, vol.76, pp. 679-693. doi: 10.1016/j.energy.2014.08.066.

15. Weng Y.-T., Hsu Y.-Y. Sliding mode regulator for maximum power tracking and copper loss minimisation of a doubly fed induction generator. IET Renewable Power Generation, 2015, vol.9, no.4, pp. 297-305. doi: 10.1049/iet-rpg.2014.0125.

16. Abdeddaim S., Betka A. Optimal tracking and robust power control of the DFIG wind turbine. International Journal of Electrical Power & Energy Systems, 2013, vol.49, no.1, pp. 234-242. doi: 10.1016/j.ijepes.2012.12.014.

17. Myers L., Bahaj A.S. Power output performance characteristics of a horizontal axis marine current turbine. Renewable Energy, 2006, vol.31, no.2, pp. 197-208. doi: 10.1016/j.renene.2005.08.022.

18. Bossanyi E. Wind Energy Handbook. New York: Wiley, 2000.

19. Bin Wang. On Discretization of Sliding Mode Control Systems. Theses doctorate, School of Electrical and Computer Engineering RMIT University Melbourne, Australia, 2008.

20. Harmouche M. Contribution to the theory of higher order sliding mode control and the control of underactuated mechanical systems. Theses Doctorate, Universite de technologie de Belfort-Montbeliard, France, 2017.

21. Laghrouche S., Chitour Y., Harmouche M., Ahmed F.S. Path Following for a Target Point Attached to a Unicycle Type Vehicle. Acta Applicandae Mathematicae, 2012, vol.121, no.1, pp. 29-43. doi: 10.1007/s10440-012-9672-8.

22. Harmouche M., Laghrouche S., Ahmed F.S., Bagdouri M.E. Second-order sliding mode controllers: an experimental comparative study on a mechatronic actuator. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2012, vol.226, no.9, pp. 1231-1248. doi: 10.1177/0959651812454061.

23. Batten W.M.J., Bahaj A.S., Molland A.F., Chaplin J.R. Hydrodynamics of marine current turbines. Renewable Energy, 2006, vol.31, no.2, pp. 249-256. doi: 10.1016/j.renene.2005.08.020.

24. Harrouz A., ben Atialah A., Harrouz O. Modeling of small wind energy based of PMSG in south of Algeria. 2012 2nd International Symposium On Environment Friendly Energies And Applications, Jun. 2012, pp. 191-195. doi: 10.1109/efea.2012.6294042.

25. Bahaj A.S., Molland A.F., Chaplin J.R., Batten W.M.J. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renewable Energy, 2007, vol.32, no.3, pp. 407-426. doi: 10.1016/j.renene.2006.01.012.

26. Muller S., Deicke M., De Doncker R.W. Doubly fed induction generator systems. IEEE Industry Applications Magazine, 2002, vol.8, no.3, pp. 26-33. doi: 10.1109/2943.999610.

27. Park J.W., Lee K.W., Lee H.J. Wide speed operation of a doubly-fed induction generator for tidal current energy. 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004. Busan (South Korea). doi: 10.1109/iecon.2004.1431771.

28. Multon B., Robin G., Gergaud O., Ben Ahmed H. Le génie électrique dans le vent : Etat de l’art dans le domaine de la génération éolienne. congres Jeunes Chercheurs en Genie Electrique 2003, June 2003, Saint Nazaire, France. 10 p.

29. Carrasco J.M., Franquelo L.G., Bialasiewicz J.T., Galvan E., PortilloGuisado R.C., Prats M.A.M., Leon J.I., Moreno-Alfonso N. Power-electronic systems for the grid integration of renewable energy sources: A survey. IEEE Transactions on Industrial Electronics, 2006, vol.53, no.4, pp. 1002-1016. doi: 10.1109/tie.2006.878356.

30. Tapia G., Tapia A., Ostolaza J.X. Proportional–integral regulator-based approach to wind farm reactive power management for secondary voltage control. IEEE Transactions on Energy Conversion, 2007, vol.22, no.2, pp. 488-498. doi: 10.1109/tec.2005.858058.

31. Tapia A., Tapia G., Ostolaza J.X., Saenz J.R. Modeling and control of a wind turbine driven doubly fed induction generator. IEEE Transactions on Energy Conversion, 2003, vol.18, no.2, pp. 194-204. doi: 10.1109/tec.2003.811727.

32. Koutroulis E., Kalaitzakis K. Design of a maximum power tracking system for wind-energy-conversion applications. IEEE Transactions on Industrial Electronics, 2006, vol.53, no.2, pp. 486-494. doi: 10.1109/tie.2006.870658.

33. Xu L., Cartwright P. Direct active and reactive power control of DFIG for wind energy generation. IEEE Transactions on Energy Conversion, 2006, vol.21, no.3, pp. 750-758. doi: 10.1109/tec.2006.875472.

34. Glaoui H., Abdelkader H., Messaoudi I., Saab H. Modelling of Wind Energy on Isolated Area. International Journal of Power Electronics and Drive System (IJPEDS), 2014, vol.4. no.2, pp. 274-280. doi: 10.11591/ijpeds.v4i2.4859.

Downloads

Published

2018-06-07

How to Cite

Glaoui, H., & Harrouz, A. (2018). SLIDING MODE CONTROL OF THE DFIG USED IN WIND ENERGY SYSTEM. Electrical Engineering & Electromechanics, (3), 61–67. https://doi.org/10.20998/2074-272X.2018.3.08

Issue

Section

Power Stations, Grids and Systems