induction heating, diagnostics and control, interconnected electromagnetic and thermal processes, thermal field distribution, three-dimensional mathematical modeling, finite element method


Aim. This article is intended to develop a technique for monitoring the lining state of induction channel furnaces for melting oxygen-free copper by monitoring changes in the distribution of thermal fields in their lining and carrying out a comparative analysis of the developed technique with the existing one that controls the electrical resistance of the melting channel of the furnaces. Technique. For carrying out the research, the theories of electromagnetic field, thermodynamics, mathematical physics, mathematical modeling based on the finite element method were used. Results. A technique for diagnosing the lining state of the induction channel furnaces for melting oxygen-free copper has been developed, which makes it possible to determine the dislocation and the size of the liquid metal leaks by analyzing the temperature distribution over the body surface both the inductor and the furnace. Scientific novelty. The connection between the temperature field distribution on the surface of the furnace body and the dislocation and dimensions of the liquid metal leaks in its lining is determined for the first time. Practical significance. Using the proposed technique will allow to conduct more accurate diagnostics of the lining conditions of the induction channel furnaces, as well as to determine the location and size of the liquid metal leaks, creating the basis for predicting the working life of the furnace


1. .Bermúdez A., Gómez D., Muñiz M.C., Salgado P., Vázquez R. Numerical simulation of a thermo-electromagneto-hydro­dynamic problem in an induction heating furnace. Applied Numerical Mathematics, 2009, vol.59, no.9, pp. 2082-2104. doi: 10.1016/j.apnum.2008.12.005.

2. Gleim T., Schröder B., Kuhl D. Nonlinear thermo-electromagnetic analysis of inductive heating processes. Archive of Applied Mechanics, 2015, vol.85, no.8, pp. 1055-1073. doi: 10.1007/s00419-014-0968-1.

3. Lucia O., Maussion P., Dede E.J., Burdio J.M. Induction heating technology and its applications: past developments, current technology, and future challenges. IEEE Transactions on Industrial Electronics, 2014, vol.61, no.5, pp. 2509-2520. doi: 10.1109/TIE.2013.2281162.

4. Pepper D.W., Heinrich J.C. The Finite Element Method: Basic Concepts and Applications with MATLAB, MAPLE, and COMSOL. CRC Press, 2017. 610 p.

5. Stegmueller M.J.R., Schindele P., Grant R.J. Inductive heating effects on friction surfacing of stainless steel onto an aluminum substrate. Journal of Materials Processing Technology, 2015, vol.216, pp. 430-439. doi: 10.1016/j.jmatprotec.2014.10.013.

6. UPCAST, Finland. Available at: (accessed 10 May 2017).

7. Hadad Y., Kochavi E., Levy A. Inductive heating with a stepped diameter crucible. Applied Thermal Engineering, 2016, vol.102, pp. 149-157. doi: 10.1016/j.applthermaleng.2016.03.151.

8. Zolotaryov V.M., Belyanin R.V., Podoltsev O.D. Analysis of electromagnetic processes in the induction channel furnace used in the cable industry. Works of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 2016, vol.44, pp. 110-115. (Rus).

9. Shcherba A.A., Podoltsev O.D., Kucheriava I.M., Ushakov V.I. Computer modeling of electrothermal processes and thermo-mechanical stress at induction heating of moving copper ingots. Technical Electrodynamics, 2013, no.2, pp. 10-18. (Rus).

10. Zolotaryov V.M., Shcherba M.A., Belyanin R.V. Three-dimensional modeling of electromagnetic and thermal processes of induction melting of copper template with accounting of installation elements design. Technical Electrodynamics, 2017, no.3, pp. 13-21. (Rus).




How to Cite

Zolotaryov, V. M., Shcherba, M. A., Belyanin, R. V., Mygushchenko, R. P., & Kropachek, O. Y. (2018). COMPARATIVE ANALYSIS OF ELECTRICAL AND THERMAL CONTROL OF THE LINING STATE OF INDUCTION APPARATUS OF COPPER WIRE MANUFACTURE. Electrical Engineering & Electromechanics, (1), 35–40.



Electrotechnical complexes and Systems

Most read articles by the same author(s)

1 2 > >>