ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНЫХ РЕЖИМОВ ДВИЖЕНИЯ РЕЛЬСОВОГО ЭЛЕКТРОПОДВИЖНОГО СОСТАВА

A. N. Petrenko, B. G. Liubarskiy, V. E. Pliugin

Анотація


Разработана методика моделирования движения асинхронного тягового двигателя при движении электроподвижного состава по энергооптимальным режимам на участке пути с заданным профилем и установленным графиком движения. Определены оптимальные режимы движения электроподвижного состава на основе метода Гамильтона-Якоби-Беллмана. Определение режимов работы тягового привода предложено проводить заранее на основании решения задачи условной оптимизации его режимов. Определение оптимальных режимов работы тягового привода было проведено на основе комбинированных методов условной минимизации функции. Использование предлагаемой методики позволяет повысить общий КПД электроподвижного состава.

Ключові слова


электроподвижной состав; генетический алгоритм; система охлаждения; тяговый двигатель; вагон трамвая; законы управления; проблема оптимизации; коэффициент полезного действия

Повний текст:

PDF ENG (English)

Посилання


1. Liubarskiy B.G. Teoretychni osnovy dlya vyboru ta ocinky perspektyvnyh system elektromehanichnogo peretvorennya energiyi elektroruhomogo skladu. Diss. dokt. techn. nauk [The theoretical basis for the selection and evaluation of advanced systems of electromechanical energy conversion of electric rolling stock. Doc. tech. sci. diss.]. Kharkiv, 2014. 368 p. (Ukr).

2. Petrenko O.M., Liubarskiy B.G., Riabov E.S. Investigation of the asynchronous traction motor windings temperature influence on the autonomous inverter voltage operating modes. Electrification of transport, 2016, no.12, pp. 87-91. (Rus).

3. Noskov V.I. Thermal modal traction engine locomotive. Bulletin of NTU «KhPІ», 2012, no.62(968), pp. 142-147. (Rus).

4. Kosmodanianskyi A.S. Teoreticheskie osnovy i razrabotka system regulirovanija temperatury tjagovyh elektricheskih mashin lokomotivov. Diss. dokt. techn. nauk [Theoretical foundations and development of temperature control systems for traction electric cars of locomotives. Doc. tech. sci. diss.]. Мoscow, 2002. 285 p. (Rus).

5. Shcherbatov V.V., Rapoport O.L., Tsukublin A.B. Modeling the thermal state of the traction motor for resource forecasting. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2005, vol.308, no.7, pp. 156-159. (Rus).

6. Getman G.K. Nauchnye osnovy opredelenija racional'nogo moshhnostnogo rjada tjagovyh sredstv zheleznodorozhnogo transporta [Rolling electrical complex on the basis of the criterion of minimizing the area under the curve of motion]. Dnipro, Dnipro National University of Railway Transport named after academician V. Lazaryan Publ., 2008. 444 p. (Rus).

7. Mokin O.B., Mokin B.I. Modelyuvannya ta optymizaciya ruhu bagatomasovyh elektrychnyh transportnyh zasobiv poverhnyamy zi skladnym relyefom [Modeling and optimization of movement of multi-mass electric vehicles with difficult terrain surfaces]. Vinnitsa, VNTU Publ., 2013. 192 p. (Ukr).

8. DmitrienkoV.D., Zakovorotnyi A.Yu. Modelirovanie i optimizacija processov upravlenija dvizheniem dizel'-poezdov [Modeling and optimization of diesel train trains control processes]. Kharkiv, NTMT Publ. Center, 2013. 248 p. (Rus).

9. Petrenko O.M., Liubarskiy B.G. Determination of the efficiency of the electromotive structure. Key points and approaches. Information and control systems on the railway transport, 2015, no.6, pp. 8-13. (Ukr).

10. Todorov E. Optimal control theory. Bayesian Brain: Probabilistic Approaches to Neural Coding, 2006, chap. 12, pp. 268-298. doi: 10.7551/mitpress/9780262042383.003.0012.

11. Kappen H.J. Optimal control theory and the linear Bellman equation. Bayesian Time Series Models, 2011, pp. 363-387. doi: 10.1017/cbo9780511984679.018.

12. Kanemoto Y. Theories of urban externalities. Holland, North-Holland Publ., 1980. 189 p.

13. Riabov E.S., Petrenko O.M., Overianova L.V. Analysis of losses in the traction induction motor under various power conditions. Eurasian Union of Scientists, 2016, no.12(33), chapt. 2, pp. 59-65. (Rus).

14. SeverinV.P., Nikulina E.N. Metody odnomernogo poiska [Methods of one-dimensional search]. Kharkiv, NTU KhPI Publ., 2013, 124 p. (Rus).

15. Panagiotis G. Study on optimal train movement for minimum energy consumption. Sweden, School of Innovation, Design and Engineering Publ., 2013. 82 p.

16. Balaji M., Kamaraj V. Design of high torque density and low torque ripple switched reluctance machine using genetic algorithm. European Journal of Scientific Research, 2010, vol.47, no.2, pp. 187-196.

17. Petrenko O.M., Domanskyi O.V., Liubarskiy B.G. Method of rolling stock asynchronous traction drive modes optimization. Mechanics and engineer, 2016, no.1, pp. 59-67. (Ukr).

18. Petrenko O.M., Liubarskiy B.G., Gliebova M.L. Software-oriented mathematical model of vehicle movement. Bulletin of NTU «KhPІ», 2016, no.6(1178), pp. 89-95. (Ukr).

19. Owatchaiphong S., Fuengwarodsakul N.H. Multi-objective based optimization for switched reluctance machines using fuzzy and genetic algorithms. 2009 International Conference on Power Electronics and Drive Systems (PEDS). doi: 10.1109/peds.2009.5385926.


Пристатейна бібліографія ГОСТ


1.     Liubarskiy B.G. Teoretychni osnovy dlya vyboru ta ocinky perspektyvnyh system elektromehanichnogo peretvorennya energiyi elektroruhomogo skladu. Diss. dokt. techn. nauk [The theoretical basis for the selection and evaluation of advanced systems of electromechanical energy conversion of electric rolling stock. Doc. tech. sci. diss.]. Kharkiv, 2014. 368 p. (Ukr).
2.     Petrenko O.M., Liubarskiy B.G., Riabov E.S. Investigation of the asynchronous traction motor windings temperature influence on the autonomous inverter voltage operating modes. Electrification of transport, 2016, no.12, pp. 87-91. (Rus).
3.     Noskov V.I. Thermal modal traction engine locomotive. Bulletin of NTU «KhPІ», 2012, no.62(968), pp. 142-147. (Rus).
4.     Kosmodanianskyi A.S. Teoreticheskie osnovy i razrabotka system regulirovanija temperatury tjagovyh elektricheskih mashin lokomotivov. Diss. dokt. techn. nauk [Theoretical foundations and development of temperature control systems for traction electric cars of locomotives. Doc. tech. sci. diss.]. Мoscow, 2002. 285 p. (Rus).
5.     Shcherbatov V.V., Rapoport O.L., Tsukublin A.B. Modeling the thermal state of the traction motor for resource forecasting. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2005, vol.308, no.7, pp. 156-159. (Rus).
6.     Getman G.K. Nauchnye osnovy opredelenija racional'nogo moshhnostnogo rjada tjagovyh sredstv zheleznodorozhnogo transporta [Rolling electrical complex on the basis of the criterion of minimizing the area under the curve of motion]. Dnipro, Dnipro National University of Railway Transport named after academician V. Lazaryan Publ., 2008. 444 p. (Rus).
7.     Mokin O.B., Mokin B.I. Modelyuvannya ta optymizaciya ruhu bagatomasovyh elektrychnyh transportnyh zasobiv poverhnyamy zi skladnym relyefom [Modeling and optimization of movement of multi-mass electric vehicles with difficult terrain surfaces]. Vinnitsa, VNTU Publ., 2013. 192 p. (Ukr).
8.     DmitrienkoV.D., Zakovorotnyi A.Yu. Modelirovanie i optimizacija processov upravlenija dvizheniem dizel'-poezdov [Modeling and optimization of diesel train trains control processes]. Kharkiv, NTMT Publ. Center, 2013. 248 p. (Rus).
9.     Petrenko O.M., Liubarskiy B.G. Determination of the efficiency of the electromotive structure. Key points and approaches. Information and control systems on the railway transport, 2015, no.6, pp. 8-13. (Ukr).
10.  Todorov E. Optimal control theory. Bayesian Brain: Probabilistic Approaches to Neural Coding, 2006, chap. 12, pp. 268-298. doi: 10.7551/mitpress/9780262042383.003.0012.
11.  Kappen H.J. Optimal control theory and the linear Bellman equation. Bayesian Time Series Models, 2011, pp. 363-387. doi: 10.1017/cbo9780511984679.018.
12.  Kanemoto Y. Theories of urban externalities. Holland, North-Holland Publ., 1980. 189 p.
13.  Riabov E.S., Petrenko O.M., Overianova L.V. Analysis of losses in the traction induction motor under various power conditions. Eurasian Union of Scientists, 2016, no.12(33), chapt. 2, pp. 59-65. (Rus).
14.  SeverinV.P., Nikulina E.N. Metody odnomernogo poiska [Methods of one-dimensional search]. Kharkiv, NTU KhPI Publ., 2013, 124 p. (Rus).
15.  Panagiotis G. Study on optimal train movement for minimum energy consumption. Sweden, School of Innovation, Design and Engineering Publ., 2013. 82 p.
16.  Balaji M., Kamaraj V. Design of high torque density and low torque ripple switched reluctance machine using genetic algorithm. European Journal of Scientific Research, 2010, vol.47, no.2, pp. 187-196.
17.  Petrenko O.M., Domanskyi O.V., Liubarskiy B.G. Method of rolling stock asynchronous traction drive modes optimization. Mechanics and engineer, 2016, no.1, pp. 59-67. (Ukr).
18.  Petrenko O.M., Liubarskiy B.G., Gliebova M.L. Software-oriented mathematical model of vehicle movement. Bulletin of NTU «KhPІ», 2016, no.6(1178), pp. 89-95. (Ukr).
19.  Owatchaiphong S., Fuengwarodsakul N.H. Multi-objective based optimization for switched reluctance machines using fuzzy and genetic algorithms. 2009 International Conference on Power Electronics and Drive Systems (PEDS). doi: 10.1109/peds.2009.5385926.




DOI: https://doi.org/10.20998/2074-272X.2017.6.04

Посилання

  • Поки немає зовнішніх посилань.


Copyright (c) 2017 A. N. Petrenko, B. G. Liubarskiy, V. E. Pliugin


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2074–272X (Print)
ІSSN 2309–3404 (Online)