A TECHNIQUE FOR EXPERIMENTAL DATA PROCESSING AT MODELING THE DISPERSION OF THE BIOLOGICAL TISSUE IMPEDANCE USING THE FRICKE EQUIVALENT CIRCUIT

Authors

  • I. V. Krivtsun Paton Electric Welding Institute of National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0001-6586-0704
  • I. V. Pentegov Paton Electric Welding Institute of National Academy of Sciences of Ukraine, Ukraine
  • V. N. Sydorets Paton Electric Welding Institute of National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-8498-4726
  • S. V. Rymar Paton Electric Welding Institute of National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.20998/2074-272X.2017.5.04

Keywords:

biological tissue, electrical properties, simulation, impedance dispersion, Fricke substitution scheme, technique, approximation coefficients

Abstract

Purpose. Modeling the dispersion of the biological tissue impedance of vegetable and animal origin using the Fricke equivalent circuit; development of a technique for experimental data processing to determine the approximation coefficients of the dispersion of the biological tissue impedance for this equivalent circuit; study of the features of the equivalent circuit at modeling the dispersion of the impedance, resistance, and reactance; the definition of the frequency domain in which using of the equivalent circuit is correct; revealing and generalization of the main regularities of dissipation of biological tissue impedance of vegetable and animal origin. Methodology. The technique is based on the scientific provisions of theoretical electrical engineering – the theory of the electromagnetic field in nonlinear media in modeling the dispersion of the biological tissue impedance. Results. The electric circuit of the Fricke equivalent circuit allows modeling the dependences of the impedance module of biological tissues, active and reactive components of impedance with acceptable accuracy for practical purposes in the frequency domain from 103 to 106 Hz. The equation of impedance of the Fricke equivalent circuit for biological tissues makes it possible to approximate the frequency dependences of the impedance modulus, active and reactive parts of the total resistance only by using the approximation coefficients corresponding to each part. The developed method for determining the values of the approximation coefficients of the impedance equation for the Fricke equivalent circuit for biological tissues allows to determine these values with high accuracy for various biological tissues. It is shown that the frequency dependences of the active component of the total resistance for tissues of vegetable and animal origin are similar. Originality. The developed technique operates with the normalized values of the impedance modulus of the Fricke equivalent circuit, the active and reactive components of the impedance as a function of frequency, which allows a comparative analysis of the dependencies of these parameters of various biological tissues of plant and animal origin. Practical value. The approximate dependences of the absolute impedance modulus, active and reactive components of the impedance allow modeling processes occurring in biological tissues with the passage of a current of different frequency. Dependence of the impedance of biological tissue can be applied to the design of diagnostic and control equipment to determine the properties of tissues of animal and vegetable origin, including developing more effective medical equipment.

References

1. Paton B.E., Krivtsun I.V., Marinsky G.S., Khudetsky I.Yu., Lankin Yu.N., Chernets A.V. Welding, cutting and heat treatment of live tissues. The Paton welding journal, 2013, no.10-11, pp. 142-153.

2. Fricke H. The electric resistance and capacity of blood for frequencies between 800 and 4½ million cycles. The Journal of General Physiology, 1925, vol.9, no.2, pp. 153-167. doi: 10.1085/jgp.9.2.153.

3. Kalakutskii L.I., Akulov S.A., Fedotov A.A. Fundamentals of impulse impedance of biological tissues: an electronic textbook. Minoboronauki Russia, Samara State Aerospace University named after S.P. Korolev (National Research University). Samara, 2011. 94 p. Available at: http://repo.ssau.ru/handle/Uchebnye-posobiya/ Osnovy-impulsnoi-impedansometrii-biologicheskih-tkanei-Elektronnyi-resurs-elektron-ucheb-posobie-54991. (Rus).

4. Kiryanov D.V. MathCAD 14 [MathCAD 14]. St. Petersburg, BHV-Petersburg Publ., 2007. 704 p. (Rus).

5. Samoilov V.O. Meditsinskaia biofizika: Uchebnik [Medical Biophysics: Textbook]. St. Petersburg, SpetsLit Publ., 2004. 496 p. (Rus).

6. Golev I.M., Korotkov L.N. Dispersion of the electrical resistance of biological objects plant origin. Bulletin of Voronezh State Technical University, 2013, vol.9, no.4, pp. 26-29. (Rus).

7. Antropov E.I. Teoreticheskaia elektrokhimiia. Uchebnik dlia khimiko-tekhnologicheskikh spetsial'nostei vuzov

[Theoretical electrochemistry. Textbook for high schools chemical technology specialties]. Moscow, Vysshaia shkola Publ., 1975. 560 p. (Rus).

8. Laufer S., Ivorra A., Reuter V.E., Rubinsky B., Solomon S.B. Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiological Measurement, 2010, vol.31, iss.7, pp. 995-1009. – doi: 10.1088/0967-3334/31/7/009.

9. Neiman L.R., Demirchian K.S. Teoreticheskie osnovy elektrotekhniki. V 2 T., T.2, Ch. 3, 4. Teoriia nelineinykh elektricheskikh i magnitnykh tsepei. Teoriia elektromagnitnogo polia [Theoretical foundations of electrical engineering. In 2 vols. Vol. 2, part 3, 4. Theory of nonlinear electric and magnetic circuits. Theory of electromagnetic field]. Moscow-Leningrad, Energiia Publ., 1966. 407 p. (Rus).

10. Privalov E.E. Elektrotekhnicheskoe materialovedenie: uchebnoe posobie [Electrotechnical materials science: Tutorial]. Moscow-Berlin: Direkt-Media Publ., 2015. 234 p. (Rus).

11. Bessonov L.A. Teoreticheskie osnovy elektrotekhniki [Theoretical foundations of electrical engineering]. Moscow, Vysshaia shkola Publ., 1964. 750 p. (Rus).

12. Tolstov Iu.G. Teoriia lineinykh elektricheskikh tsepei [Theory of linear electric circuits]. Moscow, Vysshaia shkola Publ., 1978. 279 p. (Rus).

13. Golev I.M., Bobkina E.Iu. The temperature dependence of the electrical impedance of the parenchymal tissue of vegetables. Teoreticheskie i prakticheskie aspekty estestvennykh i matematicheskikh nauk: Materialy mezhdunarodnoi zaochnoi nauchno-prakticheskoi konferentsii [Theoretical and practical aspects of the natural and mathematical sciences: Proceedings of the International correspondence scientific-practical conference]. Novosibirsk, 24 December 2012, SibAK Publ., 2012, pp. 103-108. (Rus). Available at: http://sibac.info/conf/ naturscience/i/30882. (Rus).

14. Belik D.V. Impedansnaia elektrokhirurgiia [Impedance electrosurgery]. Novosibirsk, Nauka Publ., 2000. 237 p. (Rus).

15. Gill Ph., Murray W., Wright M. Prakticheskaia optimizatsiia [Practical Optimization]. Moscow, Mir Publ., 1985. 509 p. (Rus).

Published

2017-10-20

How to Cite

Krivtsun, I. V., Pentegov, I. V., Sydorets, V. N., & Rymar, S. V. (2017). A TECHNIQUE FOR EXPERIMENTAL DATA PROCESSING AT MODELING THE DISPERSION OF THE BIOLOGICAL TISSUE IMPEDANCE USING THE FRICKE EQUIVALENT CIRCUIT. Electrical Engineering & Electromechanics, (5), 27–37. https://doi.org/10.20998/2074-272X.2017.5.04

Issue

Section

Theoretical Electrical Engineering