DETERMINATION OF DIRECTION TO RECONSTRUCTION OF GROUNDING SYSTEM
DOI:
https://doi.org/10.20998/2074-272X.2017.2.09Keywords:
grounding system, electrical safety, reconstruction, material and labour costsAbstract
Purpose. In paper the most efficient and economical way for bringing the grounding system of power facilities into compliance with requirements of normative parameters was determined. Methodology. The determination was based on the comparison of the calculated values of touch voltage and length of additional electrodes for reconstruction of grounding system by two ways. To calculate the software based on the method of point current source which located in the three-layer soil, method guidance potential, Gauss method and the method of ordinary least squares was used. Results. For three possible cases amount of material and labor costs for the reconstruction and modernization of the grounding system while maintaining the equipotent grounding system and allowable touch voltage was defined. Originality. For the first time the effectiveness the reconstruction of grounding system for requirements of touch voltage, not to her of resistance, both in terms of electrical safety and in terms of material and labor costs proved. Practical value. The implementation of results saves a national scale funds for modernization and reconstruction of existing grounding systems of power facilities.References
1. Natsional'nyy standart Ukrayiny. Pravila ulashtuvannya electroustanovok [National Standard of Ukraine. Electrical Installation Regulations]. Kharkiv, Mіnenergovugіllya Ukrayiny Publ., 2014. 793 p. (Ukr).
2. Natsional'nyy standart Ukrayiny. SOU 31.2-21677681-19:2009. Viprobuvannya ta kontrol' prystroyiv zazemlennya elektroustanovok. Tipova іnstruktsіya. [National Standard of Ukraine SOU 31.2-21677681-19:2009. Test and control devices, electrical grounding. Standard instruction]. Kyiv, Mіnenergovugіllya Ukrayiny Publ., 2010. 54 p. (Ukr).
3. Koliushko D.G., Koliushko G.M., Rudenko S.S. Statistical analysis according grounding grid the power stations and substations for of normalized parameters. Energetic and electrification, 2015, no.6, pp. 3-7. (Rus).
4. Koliushko D.G., Rudenko S.S. Mathematical model of grounding connection of a power plant with under layer. Electronic modeling, 2014, vol.36, no.2, pp. 89-97. (Rus).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 S. S. Rudenko, D. G. Koliushko, O. V. Kashcheyev
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.