INVESTIGATION OF CHANGES OF PHYSICAL AND CHEMICAL PROPERTIES OF TAP WATER UNDER INFLUENCE OF POWERFUL UNDERWATER SPARK DISCHARGES

Authors

  • D. V. Vinnikov National Science Center "Kharkiv Institute of Physics and Technology", Ukraine
  • K. V. Korytchenko National Technical University "Kharkiv Polytechnic Institute", Ukraine
  • V. I. Tkachov National Science Center "Kharkiv Institute of Physics and Technology", Ukraine
  • V. V. Egorenkov National Science Center "Kharkiv Institute of Physics and Technology", Ukraine
  • D. V. Kudin National Science Center "Kharkiv Institute of Physics and Technology", Ukraine
  • T. Y. Mirnaya National Technical University "Kharkiv Polytechnic Institute", Ukraine

DOI:

https://doi.org/10.20998/2074-272X.2017.1.07

Keywords:

underwater spark discharge, electrodes material, water properties, redox potential, pH – value

Abstract

Purpose. The purpose of this investigation is to study the changes in the redox potential and pH-value of the tap water as a function of underwater spark discharges, storage device capacitance and the charging voltage. Methodology. To define the electric parameters of discharge circuit we used the Rogowski loop and the compensated capacitance-ohm potential divider. To determine water properties before and after the treatment we used the following devices: the water analyzer Anion -7051 with the limit of absolute error of the EMF measurement ± 2 mV, the BANTE 902 device with the absolute error of ± 0.002 рН. Results. We managed to establish the time of the origination of changes in the properties of treated water. A change in the positive redox potential to a negative one occurred already after the third pulse at a total energy input of ≥ 1 kJ. The pH value increased in the range of 0.2 – 0.45 рН units. We obtained the relationship of a change in the redox potential as a function of total energy of the pulse train that actually exhibits the linear relation to the mass of erosion products. We established that the electrodes made of stainless steel and the electrodes made of graphite provide similar changes in water properties. An increase in pH is indicative of the progress of reactions that result in the formation of ОН‾. Originality. The obtained experimental data prove a rapid and reliable change in the redox potential from positive to negative changes in the redox potential exponent can persist during ten days and even longer. The erosion products of electrodes can be removed from the treated water using the method of magnetic separation. Practical value. The «HYDRA» plant can be used as the electrochemical ideal mixing reactor of a discrete action with the removal of erosion products of the electrode using the method of magnetic separation.

References

1. Ushakov V.Ya. Impulsnyj elektricheskij proboj zhidkostej [Pulsed liquid breakdown]. Tomsk, Tomsk State University Publ., 1975. 258 p. (Rus).

2. Yutkin L.A. Elektrogidravlicheskij effect i ego primenenie v promyshlennosti [Electrohydraulic effect and its application in industry]. Leningrad, Mashinostroenie Publ., 1986. 252 p. (Rus).

3. Baranov M.I. Breakthrough impulse material processing technologies: history, basic physics and technical feasibilities. Electrical engineering & electromechanics, 2009, no.1, pp 42-54. (Rus). doi: 10.20998/2074-272X.2009.1.10.

4. Vinnikov D.V., Ozerov A.N., Yuferov V.B., Sakun A.V., Korytchenko K.V., Mesenko A.P. Experimental investigation of electrical discharge in liquid initiated between cone channel electrodes. Electrical engineering & electromechanics, 2013, no.1, pp. 55-60. (Rus). doi: 10.20998/2074-272X.2013.1.13.

5. Yuferov V.B., Vinnikov D.V., Ponomaryov A.N., Buravilov I.V., Mufel’ E.V. Comparative analysis of acoustic pulses generated by the sources of millisecond and microsecond ranges. Bulletin of NTU «KhPІ», 2009, no.11, pp 185-189. (Rus).

6. Yuferov V.B., Vinnikov D.V., Buravilov I.V., Mufel’ E.V., Pahomov A.Yu., Garbuz V.V., Zhivankov K.I., Ponomaryov A.N. Electrohydraulic method of degassing of de-aerated liquids. Bulletin of NTU «KhPІ», 2011, no.16, pp. 211-217. (Rus).

7. Kondrikov B.N., Vovchenko A.I., Annikov V.E., Ivanov V.V. Vzryvnye prevrashenija elektricheskoj i himicheskoj energii [Explosive conversions of electric and chemical energies]. Kyiv, Naukova Dumka Publ., 1987. 128 p. (Rus).

8. Novopolzeva V.M., Korovina O.A., Osipov A.K., Nishev K.N. Sposob photometricheskogo opredelenija zheleza (III) v rastvorah chistyh solej i iskusstvennyh smesej [Fe (III) photometric definition process in the pure salt solutions and synthetic mixtures]. Patent Russian Federation, no. 2298171, 2006. (Rus).

9. Gorovenko G.G., Ivliev A.I., Malyushevskiy, Pastuhov V.N. Elektrovzryvnye silovye impul’snye sistemy [Electroexplosive power pulsed systems]. Kyiv, Naukova Dumka Publ., 1987. 220 p. (Rus).

10. Vinnikov D.V. Numerical investigation of the influence produced by electric circuit parameters on the formation of chemically active radicals in water vapors. Problems of Atomic Science and Technology, 2015, no.3(97), pp. 159-165.

Published

2017-02-26

How to Cite

Vinnikov, D. V., Korytchenko, K. V., Tkachov, V. I., Egorenkov, V. V., Kudin, D. V., & Mirnaya, T. Y. (2017). INVESTIGATION OF CHANGES OF PHYSICAL AND CHEMICAL PROPERTIES OF TAP WATER UNDER INFLUENCE OF POWERFUL UNDERWATER SPARK DISCHARGES. Electrical Engineering & Electromechanics, (1), 39–46. https://doi.org/10.20998/2074-272X.2017.1.07

Issue

Section

Engineering Electrophysics. High Electric and Magnetic Field Engineering