THE RELEVANCE OF DETERMINING RESPONSIBILITY FOR VIOLATION OF POWER QUALITY IN TERMS OF VOLTAGE FLUCTUATIONS

Authors

  • G. A. Senderovich National Technical University "Kharkiv Polytechnic Institute", Ukraine
  • A. V. Diachenko National Technical University "Kharkiv Polytechnic Institute", Ukraine

DOI:

https://doi.org/10.20998/2074-272X.2016.2.10

Keywords:

quality of the electric power, indicators of quality of the electric power, electromagnetic compatibility, fluctuations of tension, fliker, scope of change of tension, definition of responsibility

Abstract

Purpose. The purpose of work is the analysis of scientific and technical information for determination of expediency of researches on the determined calculations of individual share of suppliers and consumers in violation of quality of electric energy on indicators of fluctuations of voltage. Methodology. Today the indicators characterizing fluctuations of voltage aren't considered: scope of change of voltage (δUt) and dose of a flicker (Pt). These indicators represent long changes of characteristics of tension that assumes potential opportunity for studying of regularities of their emergence and the determined distribution of responsibility for these violations between subjects. Results. As showed by results of research: fluctuations of voltage make negative impact on sight of the person and functioning of the electric equipment; in a network there is a large number of possible sources of fluctuation of tension; there are ways of identification of fluctuation of voltage; there are methods of decrease in fluctuation of voltage. The analysis of literature didn't reveal development by definition of responsibility of subjects for violation of requirements to quality of electric energy regarding fluctuations of voltage. Originality. Performance of development in this direction will make definition of responsibility for violation of quality of electric energy fuller and basic. Practical value. This research will allow to develop further the metering device which defines responsibility according to the current legislation, and has flexible algorithm for further improvement. to the legislation, also has flexible algorithm for further improvement.

References

1. Gryb O.G., Senderovich G.A., Senderovich P.G. The algorithm implementing the methodology of distribution of responsibility for the distortion of symmetry. Visnyk NTU «KhPІ»Bulletin of NTU «KhPІ», 2006, no.10, pp. 7-13. (Rus).

2. Gryb O.G., Senderovich G.A., Senderovich P.G. The algorithm implementation methodology for the allocation of responsibility harmonic distortion. Kommunal'noe khoziaistvo gorodovCommunal economy of cities, 2006, no.67, pp. 237-245. (Rus).

3. Senderovich P.G. The methodology and algorithm for determining the liability for exceeding the allowable voltage fluctuation. Vіsnik Harkіvskogo natsіonalnogo tehnіchnogo unіversitetu sіlskogo gospodarstva іmenі Petra Vasilenka ‑ Bulletin of Kharkiv Petro Vasylenko National Technical University of Agriculture, 2006, no.43, vol.1, pp. 59-65. (Rus).

4. Senderovich P.G. Definition of the responsibility for quality infringement in devices of the electric power account. Svetotekhnika ta elektroenergetikaLighting Engineering and Power Engineering, 2006, no.7-8, pp.48-53. (Rus).

5. GOST 13109-97. Elektricheskaya energiya. Sovmestimost' tehnicheskih sredstv elektromagnitnaya. Normy kachestva elektricheskoi energii v sistemah elektrosnabzheniya obschego naznacheniya [State Standard 13109-97. Electrical energy. Technical equipment electromagnetic compatibility. Quality standards for electrical energy in general use power systems]. Minsk, IPK Publishing house of standards, 1998. 30 p. (Rus).

6. Kudrin B.I. Elektrosnabzhenie promyshlennykh predpriiatii: uchebnik dlia studentov vysshikh uchebnykh zavedenii [Power supply of the industrial enterprises: Textbook for students of higher educational institutions]. Moscow, Interment Inzhiniring Publ., 2006. 672 p. (Rus).

7. Kurennyi E.G., Dmitrieva, E.N., Pogrebnyak N.N. Chernikovа L.V., Cigankova N.V. Analytical method of calculation of random voltage oscillations indices in power electric networks. Nauchnye trudy Donetskogo natsional'nogo tekhnicheskogo universiteta. Seriia «Elektrotekhnika i energetika». – Scientific papers of Donetsk National Technical University. Series «Electrical Engineering and Power Engineering», 2000, no.21, pp. 34-37. (Rus).

8. Kurennyi E.G., Lyutyi A.P., Chernikova L.V. The partial reaction method for analyzing the processes at the output of linear filters in models for electromagnetic compatibility. Electrichestvo – Electricity, 2006, no.10, pp. 11-18. (Rus).

9. GOST R 51317.4.15-99 (MEK 61000-4-15-97). Sovmestimost' tekhnicheskih sredstv ehlektromagnitnaya. Flikermetr. Tekhnicheskie trebovaniya i metody ispytanij. [State Standard GOST R 51317.4.15-99 (IEC 61000-4-15-97). Compatibility of technical equipment. Flickermeter. Technical requirements and test methods]. Moscow, 1999. (Rus).

10. Zhezhelenko I.V, Shidlovskij A.K., Pivnyak G.G., Saenko Yu.L., Nojberger N.A. Ehlektromagnitnaya sovmestimost' potrebitelej [Electromagnetic compatibility of consumers]. Moscow, Mashinostroenie Publ., 2012. 351 p. (Rus).

11. GOST R 51317.4.15-2012 (MEK 61000-4-15-2010). Sovmestimost' tekhnicheskih sredstv ehlektromagnitnaya. Flikermetr. Funkcional'nye i tekhnicheskie trebovaniya. [State Standard GOST R 51317.4.15-2012 (IEC 61000-4-15-2010). Electromagnetic compatibility of technical equipment. Flikermeter. Functional and design specifications]. Moscow, Standartinform Publ., 2012. (Rus).

12. Zhezhelenko I.V., Saenko Yu.L. Pokazateli kachestva elektroenergii i ikh kontrol' na promyshlennykh predpriiatiiakh: Ucheb. posobie dlia vuzov. 3-e izd [Indicators of quality of the electric power and their control at the industrial enterprises. Educational manual for students of higher educational institutions, 3rd ed.]. Moscow, Energoatomizdat Publ., 2000. 272 p. (Rus).

Published

2016-05-18

How to Cite

Senderovich, G. A., & Diachenko, A. V. (2016). THE RELEVANCE OF DETERMINING RESPONSIBILITY FOR VIOLATION OF POWER QUALITY IN TERMS OF VOLTAGE FLUCTUATIONS. Electrical Engineering & Electromechanics, (2), 54–60. https://doi.org/10.20998/2074-272X.2016.2.10

Issue

Section

Power Stations, Grids and Systems