RELAXATIONS LOSSES IN POLYETHYLENE INSULATION OF COAXIAL CABLE STRUCTURE DURING AGING IN HIGH HUMIDITY CONDITIONS

Authors

  • G. V. Bezprozvannych National Technical University "Kharkiv Polytechnic Institute", Ukraine
  • A. G. Kyessayev National Technical University "Kharkiv Polytechnic Institute", Ukraine

DOI:

https://doi.org/10.20998/2074-272X.2016.2.07

Keywords:

water treeing, moisturizing cables, solid and foamed polyethylene insulation, dielectric loss tangent, water clusters, relaxation peaks

Abstract

Introduction. The presence of free moisture in power cables leading to the formation of tree structures - water treeing, which originate in the amorphous phase polyethylene and are a major cause of degradation of the polymer insulation. They represent the damage of the polymer size from several microns to 1 mm, developing technology for insulation defects under the combined action of the electric field and the moisture diffusing from the environment. Water treeing destroys the polymer chain, resulting in the formation of microcavities filled with moisture. The dynamics of water treeing and subtle properties largely depend on the composition, morphology of the polymer insulation, chemical nature of the defect, in which they originate. Due to the force of gravity in the water formed typical only for her region with locally ordered structure - clusters, which cause loss of relaxation. Purpose. Features presence of relaxation losses in high-frequency range in polyethylene insulation during aging in high humidity conditions of samples power and RF cables. Methodology. Samples of the power cable for the voltage of 35 kV with a cross-linked polyethylene insulation radial water-blocking protection from moisture and radio-frequency coaxial cable with thermoplastic insulation for 1440 hours in a humidity of 100%. The dielectric loss tangent measured resonance method before and after aging. Originality. Experimentally found evidence of the existence in the polymer cable insulation free water in the form of areas with locally ordered structure - clusters. It is found that the solid polyethylene insulation in the frequency dependence of dielectric loss tangent maximum relaxation shown one at 10 MHz in the initial state, and there are two additional frequency range 500 kHz - 5 MHz after moistening. For cross-linked polyethylene insulation characteristic of large width Δf of the frequency spectrum in which the observed relaxation losses. It is obvious that the width of each of the relaxation maxima is associated with characteristic fractal cluster size. It is important that the hydrated solid and foamed polyethylene insulation to show individuality, typical only for water clusters which are detected by high-frequency dipole relaxation peaks dielectric loss tangent. There is a positive correlation between the bandwidth Δf of relaxation maxima and the rate of decrease of insulation resistance by applying a high DC voltage. Practical value. Establishing a correlation between the bandwidth of relaxation maxima and the rate of decrease in the insulation resistance test objects in the laboratory makes it possible to diagnose the presence of free moisture in the power and RF cables by measuring the insulation resistance in exploitation.

References

1. De Bellet J., Matey G., Rose L., Rose V., Filippini J., Poggi Y., Raharimalala V. Some aspects of the relationship between water treeing, morphology, and microstructure of polymers. IEEE Trans. Elect. Insul., 1987, vol.EI-22, no.2, pp. 211-217. doi: 10.1109/tei.1987.298884.

2. Ciuprina F., Teissèdre G., Filippini J.C. Polyethylene crosslinking and water treeing. Polymer, 2001, vol.42, no.18, pp. 7841-7846. doi: 10.1016/s0032-3861(01)00264-6.

3. Dissado L.A. Understanding electrical trees in solids: from experiment to theory. IEEE Trans. Dielect. Electr. Insul., 2002, vol.9, no.4, pp. 483-497. doi: 10.1109/tdei.2002.1024425.

4. Kato T., Yamaguchi T., Komori F., Kawahara T., Hidaka T., Suzuoki Y. Influence of structural change by AC voltage prestressing on electrical-tree inception voltage of LDPE with water-tree degradation. 2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Montreal, Canada: IEEE, 2012, pp. 847-850. doi: 10.1109/ceidp.2012.6378913.

5. Shcherba A.A., Podoltsev A.D., Kucheriavaia I.N., Zolotarev V.M. Electric transport of polar water molecules in an inhomogeneous electric field of polymer insulation high-voltage cables. Tekhnichna elektrodynamikaTechnical Electrodynamics, 2010, no.5, pp. 3-9. (Rus).

6. Priya S., Mubashira Anjum A. Analysis of water trees and characterization techniques in XLPE cables. Indian Journal of Science and Technology, 2014, vol.7(S7), pp. 127-135.

7. Shuvalov M.Y., Mavrin M.A. Theoretical and experimental research water treeing type of «bow». Kabeli i provoda Cables and wires, 2002, no.1, pp. 44-50. (Rus).

8. Mandelbrot B.B. Fractals: form, chance and dimension. – San Francisco: Freeman, 1977.

9. Dissado L.A., Hill, R.M. The fractal nature of the cluster model dielectric response functions. Journal of Applied Physics, 1989, vol.66, no.6, pp. 2511-2524. doi: 10.1063/1.344264.

10. Dissado L.A., Hill R.M. A cluster approach to the structure of imperfect materials and their relaxation spectroscopy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1983, vol.390, no.1798, pp. 131-180. doi: 10.1098/rspa.1983.0125.

Published

2016-05-18

How to Cite

Bezprozvannych, G. V., & Kyessayev, A. G. (2016). RELAXATIONS LOSSES IN POLYETHYLENE INSULATION OF COAXIAL CABLE STRUCTURE DURING AGING IN HIGH HUMIDITY CONDITIONS. Electrical Engineering & Electromechanics, (2), 38–42. https://doi.org/10.20998/2074-272X.2016.2.07

Issue

Section

Engineering Electrophysics. High Electric and Magnetic Field Engineering

Most read articles by the same author(s)

1 2 3 > >>