ANALYSIS OF ELECTROPHYSICAL CHARACTERISTICS OF GROUNDS IN THE VICINITY ELECTRICAL SUBSTATION OF UKRAINE
DOI:
https://doi.org/10.20998/2074-272X.2015.3.10Keywords:
three-layer geoelectric structure, vertical electrical sounding, ground grids, soil, substationAbstract
Purpose. Definition of the direction for further research to improve accuracy of the calculation of rated parameters of ground grids based on the analysis of statistical databases of electro-physical characteristics of the soil. Methodology. To solve this problem we compiled the statistical base of soil of Ukraine in the location of electrical substation, we performed the statistical analysis for the number of layers of geoelectric structure, and electrical characteristics. In the experiments implemented the comparing of accuracy calculation of the most typical three-layer soil in the Ukraine, by the new three-layer model of ground grids and the equivalent two-layer model, which used previously. Results. On the results of analysis the ranges of the electrical resistivity and statistical distribution for electro-physical characteristics of the soil are determined. The resulting distributions allow to develop criteria for instruments, installations and means of interpretation during the sounding of soil, as well as the requirements for mathematical models of ground grids. It was found that the most typical for places of locations the electrical substations in Ukraine are three-layer geoelectric structures. In the paper the statistical distribution for three-layer soil by type (Q, K, H, A) are described. The results of numerical experiments show that the use of methods to simplify of the multilayers soil does not allow the calculation of grounding grids with high accuracy. In the work recommendations for applicability the method equivalenting depending on the type of geoelectric structure are developed. Originality. For the first time, we obtained the statistical distribution of stratification of the soil in the location of power plant in Ukraine, determined the accuracy of the method to simplify a multi-layer soil in determining the rated parameters of grounding grids. In the paper the necessity to develop a mathematical model of the grounding device located in the three-layer soil is shown, as well as a new installation of soil sounding, which allows to increase the depth of sounding and new means of interpreting the results of sounding Wenner installing a four-layers geoelectric structure. Practical value The resulting recommendations for the applicability of equivalenting of multilayer soil, as well as research in specific work areas would help to reduce costs on materials and labours during the modernization and upgrade of grounding devices, moreover it will increase the electrical safety and reliable operation of electrical substation.References
SOU 31.2-21677681-19:2009. Viprobuvannya ta kontrol' prystroyiv zazemlennya elektroustanovok. Tipova іnstruktsіya. [SOU 31.2-21677681-19:2009. Test and control devices, electrical grounding. Standard instruction]. Kyiv, Mіnenergovugіllya Ukrayiny Publ., 2010. 54 p. (Ukr).
Koliushko G.M., Koliushko D.G., Rudenko S.S. On the problem of increasing computation accuracy for rated parameters of active electrical installation ground grids. Elektrotekhnika i elektromekhanika – Electrical engineering & electromechanics, 2014, no.4, pp. 65-70. (Rus).
Kostruba S.I. Izmerenie elektricheskikh parametrov zemli i zazemlyayushchikh ustroistv [Measurement of electrical parameters of the earth and ground grids]. Moscow, Energoatomizdat Publ., 1983. 168 p. (Rus).
Koliushko D.G., Rudenko S.S. Mathematical model of grounding connection of a power plant with under layer. Elektronnoe modelirovanie – Electronic modeling, 2014, vol.36, no.2, pp. 89-97. (Rus).
Petkov A.A., Koliushko D.G., Link I.Y. Determination of parameters two-layer model of ground on the results for the vertical electric sounding conducted in the vicinity of substation. ElektrifIkatsIya ta avtomatizatsIya silskogo gospodarstva – Electrification and automation of agriculture, 2004, no.2(7),
pp. 3-11. (Ukr).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 D. G. Koliushko, S. S. Rudenko, G. M. Koliushko
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.