ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ СИСТЕМЫ АКТИВНОГО ЭКРАНИРОВАНИЯ ТЕХНОГЕННОГО МАГНИТНОГО ПОЛЯ ПРОМЫШЛЕННОЙ ЧАСТОТЫ С РАЗЛИЧНЫМИ АЛГОРИТМАМИ УПРАВЛЕНИЯ С ПОМОЩЬЮ ОДНОЙ ОБМОТКИ

B. I. Kuznetsov, T. B. Nikitina, I. V. Bovdyj, A. V. Voloshko, E. V. Vinichenko, D. A. Kotliarov

Анотація


Мета. Розробка методики і проведення експериментальних досліджень макета системи активного екранування техногенного магнітного поля промислової частоти з різними алгоритмами управління за допомогою однієї обмотки магнітного виконавчого органу. Методика. В ході математичного моделювання визначаються геометричні розміри обмотки магнітного виконавчого органу виходячи з розмірів області, в якій здійснюється захист, а конфігурація обмотки магнітного виконавчого органу визначається виходячи з необхідної рівномірності розподілу магнітного поля. Результати. Проведено експериментальні дослідження розімкнутих, замкнутих і комбінованих систем активного екранування техногенного магнітного поля промислової частоти з однією обмоткою магнітного виконуючого органу. Наукова новизна. Вперше експериментально підтверджена можливість зменшення рівня індукції техногенного магнітного поля промислової частоти в заданій зоні в 3-5 раз з однією обмоткою магнітного виконавчого органу. Показана можливість зменшення рівня індукції магнітного поля в обмеженій зоні розглянутого простору в 15-20 раз. Практична значимість. На підставі проведених розрахунків був виготовлений макет системи активного екранування техногенного магнітного поля промислової частоти з різними алгоритмами управління за допомогою однієї обмотки магнітного виконуючого органу.

Ключові слова


техногенне магнітне поле промислової частоти; система активного екранування; одна обмотка; алгоритм управління; експериментальні дослідження

Повний текст:

PDF (Русский)

Посилання


Active Magnetic Shielding (Field Cancellation). Available at: http://www.emfservices.com/afcs.html (accessed 10 September 2012).

Beltran H., Fuster V., García M. Magnetic field reduction screening system for a magnetic field source used in industrial applications. 9 Congreso Hispano Luso de Ingeniería Eléctrica (9 CHLIE), Marbella (Málaga, Spain), 2005, pр. 84-99.

Celozzi S., Garzia F. Active shielding for power-frequency magnetic field reduction using genetic algorithms optimization. IEE Proceedings – Science, Measurement and Technology, 2004, Vol.151, no.1, pp. 2-7. doi: 10.1049/ip-smt:20040002.

Ter Brake H.J.M., Wieringa H.J., Rogalla H. Improvement of the performance of a mu -metal magnetically shielded room by means of active compensation (biomagnetic applications). Measurement Science and Technology, 1991, Vol. 2(7), pp. 596-601. doi: 10.1088/0957-0233/2/7/004.

Yamazaki K., Kato K., Kobayashi K. MCG Measurement in the environment of active magnetic shield. Neurology and Clinical Neurophysiology, 2004, Vol. 40, pp. 1-4.

Celozzi S. Active compensation and partial shields for the power-frequency magnetic field reduction. Conference Paper of IEEE International Symposium on Electromagnetic Compatibility. Minneapolis (USA), 2002, Vol. 1, pp. 222-226. doi: 10.1109/isemc.2002.1032478.

Shenkman A., Sonkin N., Kamensky V. Active protection from electromagnetic field hazards of a high voltage power line. HAIT Journal of Science and Engineering. Series B: Applied Sciences and Engineering, Vol. 2, Issues 1-2, pp. 254-265.

Ter Brake H.J.M., Huonker R., Rogalla H. New results in active noise compensation for magnetically shielded rooms. Measurement Science and Technology, 1993, Vol. 4, Issue 12, pp. 1370-1375. doi: 10.1088/0957-0233/4/12/010.

Kazuo Kato, Keita Yamazaki, Tomoya Sato, Akira Haga, Takashi Okitsu, Kazuhiro Muramatsu, Tomoaki Ueda, Masahito Yoshizawa. Shielding effect of panel type active magnetic compensation. IEEJ Transactions on Fundamentals and Materials, 2005, Vol. 125, Issue 2, pp. 99-106. doi: 10.1541/ieejfms.125.99.

Rozov V.Yu., Assyirov D.A. Method of external magnetic field active shielding of technical objects. Tekhnichna elektrodynamikaTechnical electrodynamics, 2006, no.3, pp. 13-16. (Rus).

Rozov V.Yu., Assyirov D.A., Reytskiy S.Yu. Technical objects magnetic-field closed loop compensation systems with different feed-backs forming. Tekhnichna elektrodynamikaTechnical electrodynamics, 2008, no.4, pр. 97-100. (Rus).

Rozov V.Yu., Reutskyi S.Yu. Pyliugina O.Yu. The method of calculation of the magnetic field of three-phase power lines. Tekhnichna elektrodynamikaTechnical electrodynamics, 2014, no.5, pp. 11-13. (Rus).


Пристатейна бібліографія ГОСТ


  1. Active Magnetic Shielding (Field Cancellation). http://www.emfservices.com/afcs.html.
  2. Beltran H., Fuster V., García M. Magnetic field reduction screening system for a magnetic field source used in industrial applications // 9 Congreso Hispano Luso de Ingeniería Eléctrica (9 CHLIE), Marbella (Málaga). – 2005. – pр. 84-99.
  3. Celozzi S., Garzia F. Active shielding for power-frequency magnetic field reduction using genetic algorithms optimization // IEE Proceedings – Science, Measurement and Technology. – 2004. – Vol. 151. – № 1. – pp. 2-7.
  4. Ter Brake H.J.M., Wieringa H.J., Rogalla H. Improvement of the performance of a mu -metal magnetically shielded room by means of active compensation (biomagnetic applications) // Measurement Science and Technology. – 1991. – Vol. 2(7). – pp. 596-601.
  5. Yamazaki K., Kato K., Kobayashi K. MCG Measurement in the environment of active magnetic shield // Neurology and Clinical Neurophysiology. – 2004. – Vol. 40. – pp. 1-4.
  6. Celozzi S. Active compensation and partial shields for the power-frequency magnetic field reduction // Conference Paper of IEEE International Symposium on Electromagnetic Compatibility. Minneapolis (USA). – 2002. – Vol. 1. – pp. 222-226.
  7. Shenkman A., Sonkin N., Kamensky V. Active protection from electromagnetic field hazards of a high voltage power line // HAIT Journal of Science and Engineering. Series B: Applied Sciences and Engineering. – Vol. 2. – Issues 1-2, pp. 254-265.
  8. Ter Brake H.J.M., Huonker R., Rogalla H. New results in active noise compensation for magnetically shielded rooms // Measurement Science and Technology. – 1993. – Vol. 4. – Issue 12. – pp. 1370-1375.
  9. Kazuo Kato, Keita Yamazaki, Tomoya Sato, Akira Haga, Takashi Okitsu, Kazuhiro Muramatsu, Tomoaki Ueda, Masahito Yoshizawa. Shielding effect of panel type active magnetic compensation // IEEJ Transactions on Fundamentals and Materials. – 2005. – Vol. 125. – Issue 2. – pp. 99-106.
  10. Розов В.Ю. Ассуиров Д.А. Метод активного экранирования внешнего магнитного поля технических объектов // Технічна електродинаміка. – 2006. – №3. – С. 13-16.
  11. Розов В.Ю. Ассуиров Д.А. Реуцкий С.Ю. Замкнутые системы компенсации магнитного поля технических объектов с различными способами формирования обратных связей // Технічна електродинаміка. – 2008. – №4. – С. 97-100.
  12. Розов В.Ю., Реуцкий С.Ю., Пилюгина О.Ю. Метод расчета магнитного поля трехфазных линий электропередачи // Технічна електродинаміка. – 2014. – №5. – С. 11-13.




DOI: https://doi.org/10.20998/2074-272X.2015.2.04

Посилання

  • Поки немає зовнішніх посилань.


Copyright (c) 2015 B. I. Kuznetsov, T. B. Nikitina, I. V. Bovdyj, A. V. Voloshko, E. V. Vinichenko, D. A. Kotliarov


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2074–272X (Print)
ІSSN 2309–3404 (Online)