An additional mechanism of spark electroconductive channel transversal evolution during transition to arc

Authors

  • K. V. Korytchenko National Technical University "Kharkiv Polytechnic Institute", Ukraine
  • E. V. Poklonskiy National Technical University "Kharkiv Polytechnic Institute", Ukraine
  • V. F. Bolyukh National Technical University "Kharkiv Polytechnic Institute", Ukraine https://orcid.org/0000-0001-9115-7828

DOI:

https://doi.org/10.20998/2074-272X.2012.5.14

Keywords:

spark, electroconductive channel, two-temperature models, electronic heat conductivity

Abstract

An additional mechanism of electroconductive channel evolution due to electronic heat conductivity in nonequilibrium plasma is considered in the work. Two-temperature models of stationary arcs are considered, the condition of the models application to simulating the arc phase of a spark discharge is validated. The given condition is based on ionization equilibrium time estimation. A mathematical model of electroconductive region expansion through mechanism of electronic heat conductivity is presented. Influence of the gas-discharge medium pressure, the plasma heavy component temperature gradient, the electric field strength on the electroconductive region evolution dynamics is investigated.

References

Pulsed and continuous detomations / [Edited by G. Roy, S. Frolov, J. Sinibaldi]. - Moscow: TORUS PRESS Ltd., 2006. - 376 p.

Advances in confined detonations/ [Edited by G. Roy, S. Frolov, R. Santoro, S. Tsyganov]. - Moscow: TORUS PRESS Ltd., 2002. - 312 p.

Netleton M. Detonaciya v gazah: Per. s angl. - M.: Mir, 1989. - 280s.

Kamenskihs V. On critical energy for direct initiation of spherical detonations in stoichiometric high-pressure H2-O2 mixtures // Combustion and Flame. - 2010. - V. 157. - P. 1795-1799.

Lee J. H. S. Initiation of gaseous detonation // Annual Review of Physical Chemistry. - 1977. - №28. - P. 75-104.

Matsui H., Lee J.H. Influence of Electrode Geometry and Spacing on the Critical Energy for Direct Initiation of Spherical Gaseous Detonations // Department of Mechanical Engineering, McGill University. - 1976. - Vol. 27 - P. 217-222.

Zel'dovich Ya.B. Fizika udarnyh voln i vysokotemperaturnyh gidrodinamicheskih yavlenij. - M.: FTL, 1963. - 686 s.

Fizika i tehnika nizkotemperaturnoj plazmy / S.V. Dresvin, A.V. Donskoj, V.M. Gol'dfarb i dr.; pod obschej red. S.V. Dresvina. - M.: Atomizdat, 1972. - 352 s.

Rajzer Yu.P. Fizika gazovogo razryada: Uchebnoe rukovodstvo. - M.: Nauka. Gl. red. fiz.-mat. lit., 1987. - 592 s.

Zimin A. M. Matematicheskoe modelirovanie processov v plazmennyh ustanovkah. - M.: Izd-vo MGTU im. N.`E. Baumana, 2006.

Koryt­chenko K.V., Dovbnya A.N., Volkolupov Yu.Ya. i dr. Upravlenie impul'snoj dugoj s cel'yu `effektivnogo razogreva gaza // Zhurnal tehnicheskoj fiziki. - 2008. - T.78. - № 4. - S. 26-34.

Korytchenko K.V., Bolyukh V.F., Poklonskiy E.V. Influence on the electric field into positive column of pulsed arc // IV international conference "Electronics and applied physics" Taras Shevchenko National University of Kyiv, Radiophysics Faculty, 23-25 October 2008, Kyiv, Ukraine.

Mak-Donald A. Sverhvysokochastotnyj proboj v gazah. M.: Mir. - 1969.

Peter M. Banks Collision frequencies and energy transfer-electrons // Report of the office of Naval Research No 00009-66/1966.

Published

2012-12-14

How to Cite

Korytchenko, K. V., Poklonskiy, E. V., & Bolyukh, V. F. (2012). An additional mechanism of spark electroconductive channel transversal evolution during transition to arc. Electrical Engineering & Electromechanics, (5), 63–70. https://doi.org/10.20998/2074-272X.2012.5.14

Issue

Section

High Electric and Magnetic Field Engineering, Engineering Electrophysics