The method for design of electromagnetic hybrid active-passive shielding by overhead power lines magnetic field

Authors

DOI:

https://doi.org/10.20998/2074-272X.2024.4.03

Keywords:

overhead power line, magnetic field, electromagnetic hybrid active-passive shield, computer simulation, experimental research

Abstract

Aim. Development of the method for designing electromagnetic hybrid active-passive shield, consisting from active and multy-circuit passive parts, which is characterized by increased effectiveness of reducing the industrial frequency magnetic field created by two-circuit overhead power lines in residential buildings. Methodology. The designing problem of electromagnetic hybrid active-passive shield including robust system of active shielding and multy-circuit passive shield of initial magnetic field comes down to a solution of the multy-criteria two-player zero-sum antagonistic game. The game payoff vector calculated based on the finite element calculations system COMSOL Muliphysics. The game solution calculated based on the particles multyswarm optimization algorithms. Results. During the design of the electromagnetic hybrid active-passive shield the coordinates of the spatial arrangement of 11 circuits passive shield and the coordinates of the spatial location of one compensation winding, as well as the current and phase in this winding of the active shielding system are calculated. The results of theoretical and experimental studies of hybrid active and multy-circuit passive shield by magnetic field in residential building from two-circuit power transmission line with a «Barrel» type arrangement of wires presented. Originality. For the first time the method for designing hybrid active and multy-circuit passive shield, consisting from active and multy-circuit passive parts, which is characterized by increased effectiveness of reducing the magnetic field of industrial frequency created by two-circuit overhead power lines in residential buildings is developed. Practical value. Based on results of calculated study the shielding efficiency of the initial magnetic field what is confirmed by experimental studies determined that shielding factors whith only multy-circuit passive shield is more 1.2 units, whith only active shield is more 4 units and with electromagnetic hybrid active-passive shield is more 6.2 units. It is shown the possibility to reduce the level of magnetic field induction in residential building from two-circuit power transmission line with a «Barrel» type arrangement of wires by means of electromagnetic hybrid active shielding with single compensating winding and multy-circuit passive shielding with 11 circuit passive shield to 0.5 μT level safe for the population. References 51, figures 17.

Author Biographies

B. I. Kuznetsov, Anatolii Pidhornyi Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine

Doctor of Technical Science, Professor

T. B. Nikitina, Educational Scientific Professional Pedagogical Institute V.N. Karazin Kharkiv National Univesity

Doctor of Technical Science, Professor

I. V. Bovdui, Anatolii Pidhornyi Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine

PhD, Senior Research Scientist

K. V. Chunikhin, Anatolii Pidhornyi Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine

PhD, Senior Research Scientist

V. V. Kolomiets, Educational Scientific Professional Pedagogical Institute V.N. Karazin Kharkiv National Univesity

PhD, Assistant Professor

B. B. Kobylianskyi, Educational Scientific Professional Pedagogical Institute V.N. Karazin Kharkiv National Univesity

PhD, Assistant Professor

References

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 2021, vol. 71, no. 3, pp. 209-249. doi: https://doi.org/10.3322/caac.21660.

Directive 2013/35/EU of the European Parliament and of the Council of 26 June 2013 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields). Available at: http://data.europa.eu/eli/dir/2013/35/oj (Accessed 25.04.2024).

The International EMF Project. Radiation & Environmental Health Protection of the Human Environment World Health Organization. Geneva, Switzerland, 1996. 2 p. Available at: https://www.who.int/initiatives/the-international-emf-project (Accessed 25.04.2024).

Rozov V., Grinchenko V., Tkachenko O., Yerisov A. Analytical Calculation of Magnetic Field Shielding Factor for Cable Line with Two-Point Bonded Shields. 2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET), 2018, pp. 358-361. doi: https://doi.org/10.1109/MMET.2018.8460425.

Rozov V.Yu., Reutskyi S.Yu., Pelevin D.Ye., Kundius K.D. Approximate method for calculating the magnetic field of 330-750 kV high-voltage power line in maintenance area under voltage. Electrical Engineering & Electromechanics, 2022, no. 5, pp. 71-77. doi: https://doi.org/10.20998/2074-272X.2022.5.12.

Rozov V.Y., Pelevin D.Y., Levina S.V. Experimental research into indoor static geomagnetic field weakening phenomenon. Electrical Engineering & Electromechanics, 2013, no. 6, pp. 72-76. (Rus).

Rozov V.Y., Kvytsynskyi A.A., Dobrodeyev P.N., Grinchenko V.S., Erisov A.V., Tkachenko A.O. Study of the magnetic field of three phase lines of single core power cables with two-end bonding of their shields. Electrical Engineering & Electromechanics, 2015, no. 4, pp. 56-61. (Rus). doi: https://doi.org/10.20998/2074-272X.2015.4.11.

Salceanu A., Paulet M., Alistar B.D., Asiminicesei O. Upon the contribution of image currents on the magnetic fields generated by overhead power lines. 2019 International Conference on Electromechanical and Energy Systems (SIELMEN). 2019. doi: https://doi.org/10.1109/sielmen.2019.8905880.

Del Pino Lopez J.C., Romero P.C. Influence of different types of magnetic shields on the thermal behavior and ampacity of underground power cables. IEEE Transactions on Power Delivery, Oct. 2011, vol. 26, no. 4, pp. 2659-2667. doi: https://doi.org/10.1109/tpwrd.2011.2158593.

Hasan G.T., Mutlaq A.H., Ali K.J. The Influence of the Mixed Electric Line Poles on the Distribution of Magnetic Field. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 2022, vol. 10, no. 2, pp. 292-301. doi: https://doi.org/10.52549/ijeei.v10i2.3572.

Victoria Mary S., Pugazhendhi Sugumaran C. Investigation on magneto-thermal-structural coupled field effect of nano coated 230 kV busbar. Physica Scripta, 2020, vol. 95, no. 4, art. no. 045703. doi: https://doi.org/10.1088/1402-4896/ab6524.

Ippolito L., Siano P. Using multi-objective optimal power flow for reducing magnetic fields from power lines. Electric Power Systems Research, 2004, vol. 68, no. 2, pp. 93-101. doi: https://doi.org/10.1016/S0378-7796(03)00151-2.

Barsali S., Giglioli R., Poli D. Active shielding of overhead line magnetic field: Design and applications. Electric Power Systems Research, May 2014, vol. 110, pp. 55-63. doi: https://doi.org/10.1016/j.epsr.2014.01.005.

Bavastro D., Canova A., Freschi F., Giaccone L., Manca M. Magnetic field mitigation at power frequency: design principles and case studies. IEEE Transactions on Industry Applications, May 2015, vol. 51, no. 3, pp. 2009-2016. doi: https://doi.org/10.1109/tia.2014.2369813.

Beltran H., Fuster V., García M. Magnetic field reduction screening system for a magnetic field source used in industrial applications. 9 Congreso Hispano Luso de Ingeniería Eléctrica (9 CHLIE), Marbella (Málaga, Spain), 2005, pр. 84-99.

Bravo-Rodríguez J., Del-Pino-López J., Cruz-Romero P. A Survey on Optimization Techniques Applied to Magnetic Field Mitigation in Power Systems. Energies, 2019, vol. 12, no. 7, p. 1332. doi: https://doi.org/10.3390/en12071332.

Canova A., del-Pino-López J.C., Giaccone L., Manca M. Active Shielding System for ELF Magnetic Fields. IEEE Transactions on Magnetics, March 2015, vol. 51, no. 3, pp. 1-4. doi: https://doi.org/10.1109/tmag.2014.2354515.

Canova A., Giaccone L. Real-time optimization of active loops for the magnetic field minimization. International Journal of Applied Electromagnetics and Mechanics, Feb. 2018, vol. 56, pp. 97-106. doi: https://doi.org/10.3233/jae-172286.

Canova A., Giaccone L., Cirimele V. Active and passive shield for aerial power lines. Proc. of the 25th International Conference on Electricity Distribution (CIRED 2019), 3-6 June 2019, Madrid, Spain. Paper no. 1096.

Canova A., Giaccone L. High-performance magnetic shielding solution for extremely low frequency (ELF) sources. CIRED - Open Access Proceedings Journal, Oct. 2017, vol. 2017, no. 1, pp. 686-690. doi: https://doi.org/10.1049/oap-cired.2017.1029.

Grinchenko V.S., Chunikhin K.V. Magnetic field normalization in residential building located near overhead line by grid shield. Electrical Engineering & Electromechanics, 2020, no. 5, pp. 38-43. doi: https://doi.org/10.20998/2074-272X.2020.5.06.

Chunikhin K.V., Grinchenko V.S. Normalization of double-circuit overhead line magnetic field inside Khrushchev building. Electrical Engineering & Electromechanics, 2021, no. 3, pp. 38-41. doi: https://doi.org/10.20998/2074-272X.2021.3.06.

Celozzi S. Active compensation and partial shields for the power-frequency magnetic field reduction. 2002 IEEE International Symposium on Electromagnetic Compatibility, Minneapolis, MN, USA, 2002, vol. 1, pp. 222-226. doi: https://doi.org/10.1109/isemc.2002.1032478.

Celozzi S., Garzia F. Active shielding for power-frequency magnetic field reduction using genetic algorithms optimization. IEE Proceedings - Science, Measurement and Technology, 2004, vol. 151, no. 1, pp. 2-7. doi: https://doi.org/10.1049/ip-smt:20040002.

Celozzi S., Garzia F. Magnetic field reduction by means of active shielding techniques. WIT Transactions on Biomedicine and Health, 2003, vol. 7, pp. 79-89. doi: https://doi.org/10.2495/ehr030091.

Popov A., Tserne E., Volosyuk V., Zhyla S., Pavlikov V., Ruzhentsev N., Dergachov K., Havrylenko O., Shmatko O., Averyanova Y., Ostroumov I., Kuzmenko N., Sushchenko O., Zaliskyi M., Solomentsev O., Kuznetsov B., Nikitina T. Invariant Polarization Signatures for Recognition of Hydrometeors by Airborne Weather Radars. Computational Science and Its Applications – ICCSA 2023. Lecture Notes in Computer Science, 2023, vol. 13956, pp. 201-217. doi: https://doi.org/10.1007/978-3-031-36805-9_14.

Sushchenko O., Averyanova Y., Ostroumov I., Kuzmenko N., Zaliskyi M., Solomentsev O., Kuznetsov B., Nikitina T., Havrylenko O., Popov A., Volosyuk V., Shmatko O., Ruzhentsev N., Zhyla S., Pavlikov V., Dergachov K., Tserne E. Algorithms for Design of Robust Stabilization Systems. Computational Science and Its Applications – ICCSA 2022. ICCSA 2022. Lecture Notes in Computer Science, 2022, vol. 13375, pp. 198-213. doi: https://doi.org/10.1007/978-3-031-10522-7_15.

Ostroverkhov M., Chumack V., Monakhov E., Ponomarev A. Hybrid Excited Synchronous Generator for Microhydropower Unit. 2019 IEEE 6th International Conference on Energy Smart Systems (ESS), Kyiv, Ukraine, 2019, pp. 219-222. doi: https://doi.org/10.1109/ess.2019.8764202.

Ostroverkhov M., Chumack V., Monakhov E. Ouput Voltage Stabilization Process Simulation in Generator with Hybrid Excitation at Variable Drive Speed. 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 2019, pp. 310-313. doi: https://doi.org/10.1109/ukrcon.2019.8879781.

Tytiuk V., Chornyi O., Baranovskaya M., Serhiienko S., Zachepa I., Tsvirkun L., Kuznetsov V., Tryputen N. Synthesis of a fractional-order PIλDμ-controller for a closed system of switched reluctance motor control. Eastern-European Journal of Enterprise Technologies, 2019, no. 2 (98), pp. 35-42. doi: https://doi.org/10.15587/1729-4061.2019.160946.

Zagirnyak M., Chornyi O., Zachepa I. The autonomous sources of energy supply for the liquidation of technogenic accidents. Przeglad Elektrotechniczny, 2019, no. 5, pp. 47-50. doi: https://doi.org/10.15199/48.2019.05.12.

Chornyi O., Serhiienko S. A virtual complex with the parametric adjustment to electromechanical system parameters. Technical Electrodynamics, 2019, no. 1, pp. 38-41. doi: https://doi.org/10.15407/techned2019.01.038.

Shchur I., Kasha L., Bukavyn M. Efficiency Evaluation of Single and Modular Cascade Machines Operation in Electric Vehicle. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 2020, pp. 156-161. doi: https://doi.org/10.1109/tcset49122.2020.235413.

Zhyla S., Volosyuk V., Pavlikov V., Ruzhentsev N., Tserne E., Popov A., Shmatko O., Havrylenko O., Kuzmenko N., Dergachov K., Averyanova Y., Sushchenko O., Zaliskyi M., Solomentsev O., Ostroumov I., Kuznetsov B., Nikitina T. Practical imaging algorithms in ultra-wideband radar systems using active aperture synthesis and stochastic probing signals. Radioelectronic and Computer Systems, 2023, no. 1, pp. 55-76. doi: https://doi.org/10.32620/reks.2023.1.05.

Havrylenko O., Dergachov K., Pavlikov V., Zhyla S., Shmatko O., Ruzhentsev N., Popov A., Volosyuk V., Tserne E., Zaliskyi M., Solomentsev O., Ostroumov I., Sushchenko O., Averyanova Y., Kuzmenko N., Nikitina T., Kuznetsov B. Decision Support System Based on the ELECTRE Method. Data Science and Security. Lecture Notes in Networks and Systems, 2022, vol. 462, pp. 295-304. doi: https://doi.org/10.1007/978-981-19-2211-4_26.

Solomentsev O., Zaliskyi M., Averyanova Y., Ostroumov I., Kuzmenko N., Sushchenko O., Kuznetsov B., Nikitina T., Tserne E., Pavlikov V., Zhyla S., Dergachov K., Havrylenko O., Popov A., Volosyuk V., Ruzhentsev N., Shmatko O. Method of Optimal Threshold Calculation in Case of Radio Equipment Maintenance. Data Science and Security. Lecture Notes in Networks and Systems, 2022, vol. 462, pp. 69-79. doi: https://doi.org/10.1007/978-981-19-2211-4_6.

Shmatko O., Volosyuk V., Zhyla S., Pavlikov V., Ruzhentsev N., Tserne E., Popov A., Ostroumov I., Kuzmenko N., Dergachov K., Sushchenko O., Averyanova Y., Zaliskyi M., Solomentsev O., Havrylenko O., Kuznetsov B., Nikitina T. Synthesis of the optimal algorithm and structure of contactless optical device for estimating the parameters of statistically uneven surfaces. Radioelectronic and Computer Systems, 2021, no. 4, pp. 199-213. doi: https://doi.org/10.32620/reks.2021.4.16.

Volosyuk V., Zhyla S., Pavlikov V., Ruzhentsev N., Tserne E., Popov A., Shmatko O., Dergachov K., Havrylenko O., Ostroumov I., Kuzmenko N., Sushchenko O., Averyanova Yu., Zaliskyi M., Solomentsev O., Kuznetsov B., Nikitina T. Optimal Method for Polarization Selection of Stationary Objects Against the Background of the Earth’s Surface. International Journal of Electronics and Telecommunications, 2022, vol. 68, no. 1, pp. 83-89. doi: https://doi.org/10.24425/ijet.2022.139852.

Halchenko V., Trembovetska R., Bazilo C., Tychkova N. Computer Simulation of the Process of Profiles Measuring of Objects Electrophysical Parameters by Surface Eddy Current Probes. Lecture Notes on Data Engineering and Communications Technologies, 2023, vol. 178, pp. 411-424. doi https://doi.org/10.1007/978-3-031-35467-0_25.

Halchenko V., Bacherikov D., Filimonov S., Filimonova N. Improvement of a Linear Screw Piezo Motor Design for Use in Accurate Liquid Dosing Assembly. Smart Technologies in Urban Engineering. STUE 2022. Lecture Notes in Networks and Systems, 2023, vol. 536, pp. 237-247. doi: https://doi.org/10.1007/978-3-031-20141-7_22.

Ruzhentsev N., Zhyla S., Pavlikov V., Volosyuk V., Tserne E., Popov A., Shmatko O., Ostroumov I., Kuzmenko N., Dergachov K., Sushchenko O., Averyanova Y., Zaliskyi M., Solomentsev O., Havrylenko O., Kuznetsov B., Nikitina T. Radio-Heat Contrasts of UAVs and Their Weather Variability at 12 GHz, 20 GHz, 34 GHz, and 94 GHz Frequencies. ECTI Transactions on Electrical Engineering, Electronics, and Communications, 2022, vol. 20, no. 2, pp. 163-173. doi: https://doi.org/10.37936/ecti-eec.2022202.246878.

Maksymenko-Sheiko K.V., Sheiko T.I., Lisin D.O., Petrenko N.D. Mathematical and Computer Modeling of the Forms of Multi-Zone Fuel Elements with Plates. Journal of Mechanical Engineering, 2022, vol. 25, no. 4, pp. 32-38. doi: https://doi.org/10.15407/pmach2022.04.032.

Hontarovskyi P.P., Smetankina N.V., Ugrimov S.V., Garmash N.H., Melezhyk I.I. Computational Studies of the Thermal Stress State of Multilayer Glazing with Electric Heating. Journal of Mechanical Engineering, 2022, vol. 25, no. 1, pp. 14-21. doi: https://doi.org/10.15407/pmach2022.02.014.

Kostikov A.O., Zevin L.I., Krol H.H., Vorontsova A.L. The Optimal Correcting the Power Value of a Nuclear Power Plant Power Unit Reactor in the Event of Equipment Failures. Journal of Mechanical Engineering, 2022, vol. 25, no. 3, pp. 40-45. doi: https://doi.org/10.15407/pmach2022.03.040.

Rusanov A.V., Subotin V.H., Khoryev O.M., Bykov Y.A., Korotaiev P.O., Ahibalov Y.S. Effect of 3D Shape of Pump-Turbine Runner Blade on Flow Characteristics in Turbine Mode. Journal of Mechanical Engineering, 2022, vol. 25, no. 4, pp. 6-14. doi: https://doi.org/10.15407/pmach2022.04.006.

Ummels M. Stochastic Multiplayer Games Theory and Algorithms. Amsterdam University Press, 2010. 174 p.

Ray T., Liew K.M. A Swarm Metaphor for Multiobjective Design Optimization. Engineering Optimization, 2002, vol. 34, no. 2, pp. 141-153. doi: https://doi.org/10.1080/03052150210915.

Xiaohui Hu, Eberhart R.C., Yuhui Shi. Particle swarm with extended memory for multiobjective optimization. Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706), Indianapolis, IN, USA, 2003, pp. 193-197. doi: https://doi.org/10.1109/sis.2003.1202267.

Dergachov K., Havrylenko O., Pavlikov V., Zhyla S., Tserne E., Volosyuk V., Ruzhentsev N., Ostroumov I., Averyanova Y., Sushchenko O., Popov A., Shmatko O., Solomentsev O., Zaliskyi M., Kuzmenko N., Kuznetsov B., Nikitina T. GPS Usage Analysis for Angular Orientation Practical Tasks Solving. 2022 IEEE 9th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T), 2022, pp. 187-192. doi: https://doi.org/10.1109/PICST57299.2022.10238629.

Zhyla S., Volosyuk V., Pavlikov V., Ruzhentsev N., Tserne E., Popov A., Shmatko O., Havrylenko O., Kuzmenko N., Dergachov K., Averyanova Y., Sushchenko O., Zaliskyi M., Solomentsev O., Ostroumov I., Kuznetsov B., Nikitina T. Statistical synthesis of aerospace radars structure with optimal spatio-temporal signal processing, extended observation area and high spatial resolution. Radioelectronic and Computer Systems, 2022, no. 1, pp. 178-194. doi: https://doi.org/10.32620/reks.2022.1.14.

Hashim F.A., Hussain K., Houssein E.H., Mabrouk M.S., Al-Atabany W. Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Applied Intelligence, 2021, vol. 51, no. 3, pp. 1531-1551. doi: https://doi.org/10.1007/s10489-020-01893-z.

Downloads

Published

2024-06-21

How to Cite

Kuznetsov, B. I., Nikitina, T. B., Bovdui, I. V., Chunikhin, K. V., Kolomiets, V. V., & Kobylianskyi, B. B. (2024). The method for design of electromagnetic hybrid active-passive shielding by overhead power lines magnetic field. Electrical Engineering & Electromechanics, (4), 22–30. https://doi.org/10.20998/2074-272X.2024.4.03

Issue

Section

Electrotechnical complexes and Systems