POWER DESCRIPTIONS OF A STORM CLOUD OF TROPOSPHERE OF EARTH: FEATURES OF THEIR CALCULATION AND APPLIED UTILIZATION

Authors

  • M. I. Baranov Scientific-&-Research Planning-&-Design Institute «Molniya» National Technical University «Kharkiv Polytechnic Institute», Ukraine

DOI:

https://doi.org/10.20998/2074-272X.2018.3.05

Keywords:

atmospheric electricity, storm cloud, accumulated charge, electric potential and energy of cloud, current in the channel of discharge of cloud on earth, calculation, experimental information

Abstract

Purpose. Implementation of calculation estimation of such basic power descriptions of the system is a «storm cloud - earth», as total charge of qΣ, electric potential of φr, electric energy of W0 and amplitude-temporal parameters (ATP) of pulse current iL(t) in the channel of a long air spark discharge of cloud on earth. Methodology. Electrophysics bases of technique of high voltages and large currents, theoretical bases of the electrical engineering, theoretical electrophysics, theory of the electromagnetic field and technique of the strong electric and magnetic fields. Results. The results of calculation estimation of basic power descriptions are resulted in the overhigh voltage electrophysics calculation system a «storm cloud – earth». To such descriptions of a storm cloud behave: total electric charge of qΣ, concentrated in a storm cloud of spherical form of the set volume with the shallow dispersible negatively charged including as particulate dielectric matters the set by an middle closeness; electric potential of φr is in the spherical volume of a storm cloud of the set size; electric energy of W0, accumulated in the spherical volume of a storm cloud of the set radius of R0; PTP (amplitude of ImL and duration of τp at level 0.5ImL) of aperiodic impulse of current iL(t) of linear lightning in the plasma channel of a long air spark digit of a storm cloud on earth. The ground of possibility of the use is given in close practical calculations in place of the real storm cloud of the simplified calculation model of a storm cloud, containing the spherical volume of V0 by the radius of R0 is shown that at R0≈985 m and accordingly V0≈4∙109 m3 in the examined model of a storm cloud his indicated power descriptions arrive at the followings numeral values: charge of qΣ≈−55.6 C, potential on the outward surface of cloud of φR≈−506 MV, electric energy of W0≈14.1 GJ in a cloud and amplitude of aperiodic impulse of current of ImL≈−262.1 кА at duration of his flowing τp≈142.4 μs in the plasma channel of a long air spark digit of cloud on earth. This calculation information well correlates with the known experimental information, characteristic for the short shots of lightning in surface objects. The receive results will be instrumental in possibility of prognostication of a sticky storm wicket specialists at presence of only minimum initial information about a storm cloud in earthly troposphere. Originality. First at the analysis of a storm situation in troposphere of Earth offered approach, related to bringing the real storm cloud over the volume of V0 to an equivalent on volume spherical storm cloud by the radius of R0, for which will apply the physical and mathematical vehicle of analysis of flowings in him electrophysics processes developed an author. Practical value. Application of the in practice calculation findings will allow to deepen scientific and technical knowledge in area of nature of atmospheric electricity, will be instrumental in further development of physics of linear lightning and successful decision of global problem of protecting from lightning of surface objects and auxiliary them personnel.

References

1. Bortnik I.M., Beloglovskiy A.A., Vereshchagin I.P., Vershinin Yu.N., Kalinin A.V., Kuchinskiy G.S., Larionov V.P., Monastyrskiy A.E., Orlov A.V., Temnikov A.G., Pintal' Yu.S., Sergeev Yu.G., Sokolova M.V. Elekrophizicheskie osnovy techniki vysokih naprjazhenij [Electrophysics bases of technique of high voltage]. Moscow, Publishing house of MEI, 2010. 704 p. (Rus).

2. Baranov M.I. New hypothesis and electrophysics nature of additional mechanisms of origin, accumulation and division of electric charges in the atmospheric clouds of Earth. Electrical engineering & electromechanics, 2018, no.1, pp. 46-53. doi: 10.20998/2074-272X.2018.1.07.

3. Bol'shoj illjustrirovannyj slovar' inostrannyh slov [Large illustrated dictionary of foreign words]. Moscow, Russkie slovari Publ., 2004. 957 p. (Rus).

4. Kuz'michev V.E. Zakony i formuly fiziki [Laws and formulas of physics]. Kiev, Naukova Dumka Publ., 1989. 864 p. (Rus).

5. IEC 62305-1: 2010 «Protection against lightning. Part 1: General principles». Geneva, IEC Publ., 2010.

6. Baranov M.I., Koliushko G.M., Kravchenko V.I., Rudakov S.V. A generator of aperiodic current pulses of artificial lightning with a rationed temporal form of 10 μs/350 μs with an amplitude of ±(100–200) kA. Instruments and Experimental Techniques, 2015, vol.58, no.6, pp. 745-750. doi: 10.1134/s0020441215060032.

7. Javorskij B.M., Detlaf A.A. Spravochnik po fizike [Handbook of physics]. Moscow, Nauka Publ., 1990. 624 p. (Rus).

8. Brzhezitskiy V.A., Bilyy I.V., Boyko N.I., Gul′ V.I., Gurin A.G., Il′enko O.S., Isakova A.V., Kondra B.M., Kopshin V.A., Kravchenko V.I., Naboka B.G., Protsenko O.R., Rudakov V.V., Khimenko L.T., Khominich V.I., Shostak V.A., Yanishevskiy V.I. Tehnika i elektrophizika vysokih naprjazhenij [Technics and Electrophysics of High Voltages]. Kharkiv, Tornado Publ., 2005. 930 p. (Ukr).

9. Iossel' Yu.Ya., Kochanov E.S., Strunskiy M.G. Raschet elektricheskoj emkosti [Calculation of electric capacity]. Leningrad, Energoizdat Publ., 1981. 288 p. (Rus).

10. Neyman L.R., Demirchyan K.S. Teoreticheskie osnovy elektrotekhniki. V 2-kh t. T. 1 [Theoretical bases of electrical engineering. In 2 vols. Vol. 1]. Leningrad, Energoizdat Publ., 1981, p. 536. (Rus).

11. Knopfel' G. Sverkhsil'nye impul'snye magnitnye polia [Ultra strong pulsed magnetic fields]. Moscow, Mir Publ., 1972. 391 p. (Rus).

12. Baranov M.I. Izbrannye voprosy elektrofiziki. Tom 3: Teorija i praktika elektrofizicheskih zadach [Selected topics of Electrophysics. Vol. 3: Theory and practice of electrophysics tasks]. Kharkiv, Tochka Publ., 2014. 400 p. (Rus).

Published

2018-06-07

How to Cite

Baranov, M. I. (2018). POWER DESCRIPTIONS OF A STORM CLOUD OF TROPOSPHERE OF EARTH: FEATURES OF THEIR CALCULATION AND APPLIED UTILIZATION. Electrical Engineering & Electromechanics, (3), 37–42. https://doi.org/10.20998/2074-272X.2018.3.05

Issue

Section

Engineering Electrophysics. High Electric and Magnetic Field Engineering